定积分的应用

一、几何应用

1. 平面图形的面积

(1) 若平面域 D D D 由曲线 y = f ( x ) y=f(x) y=f(x) y = g ( x ) ( f ( x ) ⩾ g ( x ) ) y=g(x)(f(x)\geqslant g(x)) y=g(x)(f(x)g(x)) x = a x= a x=a x = b x= b x=b ( a < b ) ( a< b) (a<b) 所围成,则
S = ∫ a b [ f ( x ) − g ( x ) ] d x S=\int_a^b\left[f(x)-g(x)\right]dx S=ab[f(x)g(x)]dx
(2) 若平面域 D D D 由曲线 ρ = ρ ( θ ) \rho=\rho(\theta) ρ=ρ(θ) θ = α \theta=\alpha θ=α θ = β ( α < β ) \theta=\beta(\alpha<\beta) θ=β(α<β) 所围成,则
S = 1 2 ∫ α β ρ 2 ( θ ) d θ S=\frac12\int_\alpha^\beta\rho^2(\theta)\mathrm{d}\theta S=21αβρ2(θ)dθ
【拓展】用二重积分求:二重积分被积函数等于1时,可以直接表示区域面积,即 S = ∬ D 1 d σ S=\displaystyle\iint\limits_{D}1\mathrm{d}\sigma S=D1dσ
(1) S = ∬ D 1 d σ = ∫ a b d x ∫ g ( x ) f ( x ) d y = ∫ a b [ f ( x ) − g ( x ) ] d x S=\displaystyle\iint\limits_{D}1\mathrm{d}\sigma=\int_a^b\mathrm{d}x\int_{g(x)}^{f(x)}\mathrm{d}y=\int_a^b\left[f(x)-g(x)\right]dx S=D1dσ=abdxg(x)f(x)dy=ab[f(x)g(x)]dx
(2) S = ∬ D 1 d σ = ∫ α β d θ ∫ 0 ρ ( θ ) ρ d ρ = 1 2 ∫ α β ρ 2 ( θ ) d θ ( d σ = ρ d ρ d θ ) S=\displaystyle\iint\limits_{D}1\mathrm{d}\sigma=\int_\alpha^\beta\mathrm{d}\theta\int_0^{\rho(\theta)}\rho\mathrm{d}\rho=\frac12\int_\alpha^\beta\rho^2(\theta)\mathrm{d}\theta\quad(\mathrm{d}\sigma=\rho\mathrm{d}\rho\mathrm{d}\theta) S=D1dσ=αβdθ0ρ(θ)ρdρ=21αβρ2(θ)dθ(dσ=ρdρdθ)

2. 旋转体体积

若平面域 D D D 由曲线 y = f ( x ) ( f ( x ) ⩾ 0 ) y=f(x)(f(x)\geqslant0) y=f(x)(f(x)0) x = a x=a x=a x = b ( a < b ) x=b\left(a<b\right) x=b(a<b)所围成,则
(1) 区域 D D D x x x 轴旋转一周所得到的旋转体积为
V x = π ∫ a b f 2 ( x ) d x V_x=\pi\int_a^bf^2(x)\mathrm{d}x Vx=πabf2(x)dx
(2) 区域 D D D y y y 轴旋转一周所得到的旋转体积为
V y = 2 π ∫ a b x f ( x ) d x V_{y}=2\pi\int_{a}^{b}xf(x)\mathrm{d}x Vy=2πabxf(x)dx
【拓展】用二重积分求: V = 2 π ∬ D r ( x , y ) d σ V=2\pi\displaystyle\iint\limits_{D}r(x,y)\mathrm{d}\sigma V=2πDr(x,y)dσ r ( x , y ) = ∣ a x + b y + c ∣ a 2 + b 2 r(x,y)=\displaystyle\frac{|ax+by+c|}{\sqrt{a^{2}+b^{2}}} r(x,y)=a2+b2 ax+by+c。则(1)(2)分别为 y = 0 y=0 y=0 x = 0 x=0 x=0 时的特例
(1) V x = 2 π ∬ D y d σ = 2 π ∫ a b d x ∫ 0 f ( x ) y d y = π ∫ a b f 2 ( x ) d x V_{x}=2\pi\displaystyle\iint\limits_{D}y\mathrm{d}\sigma=2\pi\int_{a}^{b}\mathrm{d}x\int_{0}^{f(x)}y\mathrm{d}y=\pi\int_{a}^{b}f^2(x)\mathrm{d}x Vx=2πDydσ=2πabdx0f(x)ydy=πabf2(x)dx
(2) V y = 2 π ∬ D x d σ = 2 π ∫ a b d x ∫ 0 f ( x ) x d y = 2 π ∫ a b x f ( x ) d x V_{y}=2\pi\displaystyle\iint\limits_{D}x\mathrm{d}\sigma=2\pi\int_{a}^{b}dx\int_{0}^{f(x)}xdy=2\pi\int_{a}^{b}xf(x)\mathrm{d}x Vy=2πDxdσ=2πabdx0f(x)xdy=2πabxf(x)dx

3. 曲线弧长

( 1 )   C : y = y ( x ) , a ⩽ x ⩽ b . s = ∫ a b 1 + y ′ 2 d x ( 2 )   C : { x = x ( t ) y = y ( t ) α ⩽ t ⩽ β . s = ∫ α β x ′ 2 + y ′ 2 d t ( 3 )   C : ρ = ρ ( θ ) , α ⩽ θ ⩽ β . s = ∫ α β ρ 2 + ρ ′ 2 d θ \begin{aligned} &(1)\ C:y=y(x),\quad a\leqslant x\leqslant b.\quad s=\int_{a}^{b}\sqrt{1+y^{\prime2}}\mathrm{d}x\\ &(2)\ C:\begin{cases}x=x(t)\\y=y(t)\end{cases} \alpha\leqslant t\leqslant\beta.\quad s=\int_{\alpha}^{\beta}\sqrt{x^{\prime2}+y^{\prime2}}\mathrm{d}t\\ &(3)\ C:\rho=\rho(\theta), \alpha\leqslant\theta\leqslant\beta.\quad s=\int_{\alpha}^{\beta}\sqrt{\rho^{2}+\rho^{\prime2}}\mathrm{d}\theta \end{aligned} (1) C:y=y(x),axb.s=ab1+y′2 dx(2) C:{x=x(t)y=y(t)αtβ.s=αβx′2+y′2 dt(3) C:ρ=ρ(θ),αθβ.s=αβρ2+ρ′2 dθ

4. 旋转体侧面积

曲线 y = f ( x ) ( f ( x ) ⩾ 0 ) y=f(x)(f(x)\geqslant0) y=f(x)(f(x)0) x = a x=a x=a x = b ( 0 ⩽ a < b ) x=b(0\leqslant a<b) x=b(0a<b) x x x 轴所围成区域绕 x x x 轴旋转所得旋转体的侧面积为
S = 2 π ∫ a b f ( x ) 1 + f ′ 2 ( x ) d x S=2\pi\int_a^bf(x)\sqrt{1+f^{\prime2}(x)}dx S=2πabf(x)1+f′2(x) dx
【拓展】上式对应3.(1),除此外与(2)(3)对应的为
(2) S = 2 π ∫ a b y ( t ) x ′ 2 + y ′ 2 d t S=2\pi\displaystyle\int_a^by(t)\sqrt{x^{\prime2}+y^{\prime2}}\mathrm{d}t S=2πaby(t)x′2+y′2 dt
(3) S = 2 π ∫ α β ρ sin ⁡ θ ρ 2 + ρ ′ 2 d θ S=2\pi\displaystyle\int_{\alpha}^{\beta}\rho\sin\theta\sqrt{\rho^{2}+\rho^{\prime2}}\mathrm{d}\theta S=2παβρsinθρ2+ρ′2 dθ

二、物理应用

  1. 压力
  2. 变力做功
  3. 引力

1.2.重点。没有现成公式,需要根据题意建立微元灵活应用


个人笔记,如有错误,烦请指正

  • 17
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值