ZFNet论文总结思考

论文简述

本文主要通过反卷积(DeConvNet)实现对卷积网络的可视化,理解网络中特征层的函数以及分类器操作,从而实现对网络的优化;本文实现了对AlexNet网络的可视化,并对其进行优化,使分类结果提升。此外,还通过遮挡部分输入图像,进行分类器的敏感性测试,指出对分类产生重要影响的图像部分。


参考文献

  • Zeiler, M., Taylor, G., and Fergus, R. Adaptive deconvolutional networks for mid and high level feature learning. In ICCV, 2011 —deconvnet网络
  • Krizhevsky, A., Sutskever, I., and Hinton, G.E. Imagenet classification with deep convolutional neural networks. In NIPS, 2012 —AlexNet网络

论文要点

反卷积可视化

反卷积网络仍可理解为一种卷积网络模型,因为其使用同样的操作(如过滤,池化等),但与 常见的网络将图像像素映射为特征 相反,其将特征映射至输入像素。与 deconvnet那篇论文(Adaptive deconvolutional networks for mid and high level feature learning)中不同的是,此处不将其用于无监督学习,而是将训练好的convnet展现到输入像素空间中。
deconvnet
图中,左侧为deconvnet层,右侧为convnet层,两者相关联,通过deconvnet将近似重构convnet的低层特征。下侧为反池化操作。
如上图所示,待检测卷积网络的每层均与反卷积网络相关联,使得反卷积最终能映射至图像像素层。过程:将特征图做为相关联的deconvnet的输入,然后经过(i)反池化(ii)校正(iii)过滤,从而重构低层特征。

反池化

卷积网络中的最大池化是不可逆的操作,但我们可以通过记录每个池化区域中最大值的位置,构成switch变量。再在反卷积网络中利用swicth变量,将最大池化值放置到原位置,其余位置填0。

校正

通过校正,确保每层重构的特征图均为正值,与卷积网络中的作用一致。

过滤

反卷积过程中的过滤器是卷积过程中过滤器的转置,相当于将该过滤器进行了水平和垂直上的翻转。

可视化结果

在这里插入图片描述在这里插入图片描述
可视化结果包含两部分:左侧为重构后可视化结果,只关注每块图像中的判别结构,右侧为相应的图片块, 图像间具有更多的变化。(如第五层,一行,二列,图像块看起来很杂乱,但从可视化结果可以看出特征图的关注点在背景的草坪)。此外,每个特征图都选取了最优的9个激活。

  • 给定特征图可映射至多个像素空间,显示其对输入变形的不变形。
  • 各层的映射显示了网络中特征的层次性。
    在这里插入图片描述
  • 训练时的特征演变:低层特征在数次迭代后趋于收敛,而高层特征则需一定数量级的迭代才能有所提升。(逐层优化)
    在这里插入图片描述
  • 特征不变形:对于平移和缩放,较小的变形会对第一层特征产生显著的影响,但对高层特征,呈现出拟线性特征,具有较好的鲁棒性。但网络对旋转特征不具有不变性。

结构选择

AlexNet网络中

  • 第一层滤波器是极高频和低频信息的混合,中频覆盖率低。(要么就是灰色,要么就是波纹,较少中频信息,对比结构选择前后的图像,效果比较明显)
  • 第二层产生混叠伪影(沿图像中心向外呈辐射状,并具有锯齿特点的伪影,源于采样不合理导致的频谱混叠。)

遮挡实验

  • 网络模型会定位场景中的物体,且可视化结果反应了激活特征图的图像结构。
  • 遮挡实验的思路很好,类似于控制变量,可以更加清楚的看清问题

对应关系分析

  • 计算遮罩操作所带来的不同图像的变化的汉明距离之和,较低的值表示遮罩操作导致的变化更为一致,因此不同图像中相同对象部分之间的对应关系更紧密。
  • 实验表明网络隐含的学习了不同图像的特定物体间的对应关系(如脸上应该有眼睛和鼻子等)

泛化能力

  • 只重新训练最顶端的分类器层(模型迁移)
  • 改变模型参数,实现多模型融合

思考

本文提供了实用的实验测试方法,如遮挡实验。还全面的讲述了由反卷积带来的可视化效果,并验证可视化的可行性,以及可视化能够实现的验证和优化。很值得深思的一篇论文。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 很抱歉,我不能提供完整的 PyTorch ZFNet 代码。但是我可以为您提供一些指导,帮助您实现该模型。 ZFNet 是一种卷积神经网络,最初用于 ImageNet 图像分类任务。它是 AlexNet 的一个变体,在论文 "Visualizing and Understanding Convolutional Networks" 中被提出。 如果您想实现 ZFNet 模型,您可以利用 PyTorch 的神经网络模块,自定义网络结构。您需要定义一个继承自 `nn.Module` 的类,并在该类中实现网络的前向传播(forward)方法。在前向传播方法中,您可以使用 PyTorch 中的神经网络层(如卷积层、池化层等)构建网络结构。 示例代码如下: ```python import torch.nn as nn class ZFNet(nn.Module): def __init__(self): super(ZFNet, self).__init__() # 在这里定义网络的层 self.conv1 = nn.Conv2d(3, 96, kernel_size=7, stride=2) self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2) self.conv2 = nn.Conv2d(96, 256, kernel_size=5, padding=2) self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2) self.conv3 = nn.Conv2d(256, 384, kernel_size=3, padding=1) self.conv4 = nn.Conv2d(384, 384, kernel_size=3, padding=1) self.conv5 = nn.Conv2d(384, 256, kernel_size=3, padding=1) self.pool5 = nn.MaxPool2d(kernel_size=3, stride=2) self.fc6 = n ### 回答2: PyTorch是一个广泛使用的深度学习框架,而ZFNet是一种经典的卷积神经网络架构。下面是一个对PyTorch中ZFNet的简要代码解释: 首先,我们需要导入PyTorch库和ZFNet相关的模块和函数: ```python import torch import torch.nn as nn import torch.optim as optim ``` 接下来,我们定义一个继承自`nn.Module`的ZFNet类,这个类包含了ZFNet网络的结构: ```python class ZFNet(nn.Module): def __init__(self, num_classes=1000): super(ZFNet, self).__init__() self.features = nn.Sequential( # 定义ZFNet的特征提取层 nn.Conv2d(3, 96, 7, 2, 1), nn.ReLU(inplace=True), nn.MaxPool2d(3, 2, 1), nn.Conv2d(96, 256, 5, 2, 1), nn.ReLU(inplace=True), nn.MaxPool2d(3, 2, 1), nn.Conv2d(256, 384, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(384, 384, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, 3, 1, 1), nn.ReLU(inplace=True), nn.MaxPool2d(3, 2, 1) ) self.classifier = nn.Sequential( nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, num_classes) ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x ``` 在这段代码中,我们首先定义了网络的特征提取层,然后定义了网络的分类器部分。在forward函数中,我们将输入的数据传递给特征提取层和分类器,最终返回分类的结果。 接下来,我们可以实例化一个ZFNet的对象并进行训练和测试: ```python # 创建一个ZFNet的实例 model = ZFNet(num_classes=10) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9) # 进行训练和测试 for epoch in range(num_epochs): running_loss = 0.0 for i, data in enumerate(train_loader): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: # 每100个batch打印一次loss print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 # 在测试集上进行测试 correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy on test images: %.2f %%' % (100 * correct / total)) ``` 在这段代码中,我们首先创建了一个ZFNet的实例,然后定义了损失函数和优化器。接着,我们进行了训练和测试的循环,每个epoch都计算了训练集上的损失并更新了网络的参数。最后,在测试集上计算了分类的准确率。 以上是使用PyTorch实现ZFNet的基本代码解释,通过训练和测试可以让ZFNet网络适应特定的数据集,并得到相应的分类结果。 ### 回答3: Pytorch是一个非常流行的深度学习框架,而ZFNet是一个基于卷积神经网络(Convolutional Neural Network,CNN)的经典模型。 ZFNet是由Matthew Zeiler和Rob Fergus于2013年提出的,在当时是ImageNet图像分类挑战比赛上取得了很好的成绩。该模型主要由五个卷积层和三个全连接层组成。 使用Pytorch实现ZFNet的代码可以分为以下几个步骤: 1. 导入所需的Pytorch库和模块,如torch、torchvision等。 2. 定义ZFNet的网络结构。可以使用torch.nn模块来创建卷积层、全连接层等各种网络层。根据ZFNet的结构,可以定义五个卷积层和三个全连接层,并使用激活函数(如ReLU)来增加网络的非线性能力。 3. 定义模型的前向传播函数。在这个函数中,将输入数据通过各层进行计算,并返回输出。 4. 定义损失函数和优化器。根据具体的任务,选择适用的损失函数(如交叉熵损失函数)和优化器(如随机梯度下降优化器)。 5. 准备训练数据。通常,可以使用torchvision库中的数据集(如MNIST、CIFAR-10等)来获取训练数据。可以使用torchvision.transforms库来对数据进行预处理,如调整大小、标准化等。 6. 开始训练。将训练数据输入网络,通过前向传播计算输出,再将输出与真实标签进行比较,计算损失并进行反向传播更新模型参数。 7. 进行模型测试。使用测试数据对训练好的模型进行测试,输出测试结果。 以上是使用Pytorch实现ZFNet的大致步骤,具体代码可以参考Pytorch官方文档或各种开源代码库中的实现。实际实现中,还可以根据具体需求进行调整和优化,如增加正则化、数据增强等操作,以提高模型的性能和泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值