【高中必修二】导数

极限

数列极限

数列极限定义

{ x n } \{x_n\} {xn} 为一个数列,若存在常数 a a a,对于给定的 ε > 0 \varepsilon > 0 ε>0,都存在 N ∈ Z + N \in \mathbb Z_+ NZ+,使 n > N n > N n>N 时,

∣ x n − a ∣ < ε |x_n-a|<\varepsilon xna<ε

总成立,那么就称 a a a { x n } \{x_n\} {xn} 的极限,或 { x n } \{x_n\} {xn} 收敛于 a a a,记为

lim ⁡ n → ∞ x n = a \lim_{n\to\infty}x_n=a nlimxn=a

若不存在 a a a,则代表 { x n } \{x_n\} {xn} 没有极限,或 { x n } \{x_n\} {xn} 发散,也称 lim ⁡ n → ∞ x n \lim\limits_{n\to\infty}x_n nlimxn 不存在。

数列极限运算

我们设 { a n } , { b n } \{a_n\},\{b_n\} {an},{bn} 满足 lim ⁡ n → ∞ a n = A , lim ⁡ n → ∞ b n = B \lim\limits_{n\to\infty}a_n=A,\lim\limits_{n\to\infty}b_n=B nliman=A,nlimbn=B,则有。

lim ⁡ n → ∞ ( a n ± b n ) = A ± B \lim\limits_{n\to\infty}(a_n\pm b_n)=A\pm B nlim(an±bn)=A±B
lim ⁡ n → ∞ ( a n b n ) = A B \lim\limits_{n\to\infty}(a_nb_n)=AB nlim(anbn)=AB
lim ⁡ n → ∞ ( a n b n ) = A B ( B ≠ 0 , ∀ b i , b i ≠ 0 ) \lim\limits_{n\to\infty}(\frac{a_n}{b_n})=\frac{A}{B}(B\not=0,\forall b_i,bi\not=0) nlim(bnan)=BA(B=0,bi,bi=0)

常见数列极限

lim ⁡ n → ∞ c = c \lim\limits_{n\to\infty}c=c nlimc=c c c c 为常数)
lim ⁡ n → ∞ n = + ∞ \lim\limits_{n\to\infty}n=+\infty nlimn=+ c c c 为常数)
lim ⁡ n → ∞ 1 n a = 0 \lim\limits_{n\to\infty}\frac{1}{n^a}=0 nlimna1=0 a a a 为常数, a > 0 a > 0 a>0
lim ⁡ n → ∞ a n = 0 \lim\limits_{n\to\infty}a^n=0 nliman=0 a a a 为常数, 0 < a < 1 0<a<1 0<a<1
lim ⁡ n → ∞ a n = + ∞ \lim\limits_{n\to\infty}a^n=+\infty nliman=+ a a a 为常数, 1 < a 1<a 1<a

夹极限法则:若数列 { a n } { b n } { c n } \{a_n\}\{b_n\}\{c_n\} {an}{bn}{cn},满足 ∀ 0 ≤ n , a n < b n < c n \forall 0\leq n,a_n<b_n<c_n ∀0n,an<bn<cn,且
lim ⁡ n → ∞ a n = lim ⁡ n → ∞ c n = t \lim\limits_{n\to\infty}a_n=\lim\limits_{n\to\infty}c_n=t nliman=nlimcn=t, 则 lim ⁡ n → ∞ b n = t \lim\limits_{n\to\infty} b_n=t nlimbn=t

结论

{ x n } \{x_n\} {xn} 为单调数列,且 { x n } \{x_n\} {xn} 有界,则 lim ⁡ n → ∞ x n \lim\limits_{n\to\infty}x_n nlimxn 存在。

{ x n } \{x_n\} {xn} 无界,则 lim ⁡ n → ∞ x n \lim\limits_{n\to\infty}x_n nlimxn 必不存在。

{ x n } \{x_n\} {xn} 中,存在 { a n } \{a_n\} {an} { b n } \{b_n\} {bn} 都为 { x n } \{x_n\} {xn} 子序列,且 lim ⁡ n → ∞ a n ≠ lim ⁡ n → ∞ b n \lim\limits_{n\to\infty}a_n\not=\lim\limits_{n\to\infty}b_n nliman=nlimbn,则 lim ⁡ n → ∞ x n \lim\limits_{n\to\infty}x_n nlimxn 必不存在。

若数列 { x n } \{x_n\} {xn} 收敛,则 { x n } \{x_n\} {xn} 极限唯一。

若数列 { x n } \{x_n\} {xn} 收敛,那么 { x n } \{x_n\} {xn} 有界。

lim ⁡ n → ∞ x n = a \lim\limits_{n\to\infty}x_n=a nlimxn=a a > 0 a>0 a>0,则存在 N ∈ Z + N \in \mathbb Z_+ NZ+,当 n > N n>N n>N 时,有 x n > 0 x_n>0 xn>0

lim ⁡ n → ∞ x n = a \lim\limits_{n\to\infty}x_n=a nlimxn=a a < 0 a<0 a<0,则存在 N ∈ Z + N \in \mathbb Z_+ NZ+,当 n > N n>N n>N 时,有 x n < 0 x_n<0 xn<0

若一数列收敛于 a a a,则其任意子序列收敛于 a a a

函数极限

函数极限定义

若存在 r > 0 r>0 r>0 使得 D = { x ∣ 0 < ∣ x − x 0 ∣ < r , x ≠ x 0 } D=\{x|0<|x-x_0|<r,x\not=x_0\} D={x∣0<xx0<r,x=x0} 包含于 f ( x ) f(x) f(x) 定义域,则说 y = f ( x ) y=f(x) y=f(x) x 0 x_0 x0 附近有定义,称去心邻域内有定义。

若函数 f ( x ) f(x) f(x) x 0 x_0 x0 处某去心邻域内有定义。若存在常数 A A A,对于任意 ε > 0 \varepsilon > 0 ε>0,总存在 δ > 0 \delta >0 δ>0,使得

∀ 0 < ∣ x − x 0 ∣ < δ , ∣ f ( x ) − A ∣ < δ \large{\forall} \normalsize 0<|x-x_0|<\delta,|f(x)-A|<\delta 0<xx0<δ,f(x)A<δ

那么常数 A A A 就叫函数 f ( x ) f(x) f(x) x → x 0 x \to x_0 xx0 时的极限,记作 lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to x_0}f(x)=A xx0limf(x)=A

函数 f ( x ) f(x) f(x) x 0 x_0 x0 处极限与 f ( x 0 ) f(x_0) f(x0) 无关,例如: f ( x ) = { x 2 ( x ≠ 1 ) − 1024 ( x = 1 ) f(x)=\begin{cases}x^2(x\not=1)\\-1024(x=1)\end{cases} f(x)={x2(x=1)1024(x=1) 此时, lim ⁡ x → x 0 f ( x ) = x 2 = 1 \lim\limits_{x\to x_0}f(x)=x^2=1 xx0limf(x)=x2=1,而不是 lim ⁡ x → x 0 = f ( x 0 ) = − 1024 \lim\limits_{x\to x_0}=f(x_0)=-1024 xx0lim=f(x0)=1024.

lim ⁡ x → x 0 f ( x ) \lim\limits_{x\to x_0}f(x) xx0limf(x) 存在,当且仅当 lim ⁡ x → x 0 + f ( x ) = lim ⁡ x → x 0 − f ( x ) \lim\limits_{x\to {x_0}^+}f(x)=\lim\limits_{x\to {x_0}^-}f(x) xx0+limf(x)=xx0limf(x) lim ⁡ x → x 0 − , lim ⁡ x → x 0 + \lim\limits_{x\to {x_0}^-},\lim\limits_{x\to {x_0}^+} xx0lim,xx0+lim分别为左极限右极限,代表从左或右逼近 x 0 x_0 x0 所得的极限)

f ( x ) f(x) f(x) ∣ x ∣ |x| x 大于一正数时有意义,若存在常数 A A A,对于给定 ε > 0 \varepsilon >0 ε>0,总存在 X > 0 X>0 X>0,使得

∀ ∣ x ∣ > X , ∣ f ( x ) − A ∣ < ε \large{\forall} \normalsize |x|>X,|f(x)-A|<\varepsilon x>X,f(x)A<ε

则称 A A A f ( x ) f(x) f(x) x → ∞ x \to \infty x 的极限,记为 lim ⁡ x → ∞ f ( x ) = A \lim\limits_{x\to\infty}f(x)=A xlimf(x)=A

函数极限运算

无穷小的和是无穷小。(无穷小指大于 0 0 0 的最小实数)

有界函数与无穷小的乘积为无穷小。

lim ⁡ f ( x ) = A , lim ⁡ g ( x ) = B \lim f(x) = A,\lim g(x) = B limf(x)=A,limg(x)=B,则

lim ⁡ [ f ( x ) ± g ( x ) ] = lim ⁡ f ( x ) ± lim ⁡ g ( x ) = A ± B \lim[f(x)\pm g(x)]=\lim f(x)\pm\lim g(x)=A\pm B lim[f(x)±g(x)]=limf(x)±limg(x)=A±B
lim ⁡ [ f ( x ) g ( x ) ] = lim ⁡ f ( x ) lim ⁡ g ( x ) = A ⋅ B \lim[f(x)g(x)]=\lim f(x)\lim g(x)=A\cdot B lim[f(x)g(x)]=limf(x)limg(x)=AB
lim ⁡ [ f ( x ) g ( x ) ] = lim ⁡ f ( x ) lim ⁡ g ( x ) = A B ( g ( x ) ≠ 0 , B ≠ 0 ) \lim[\dfrac{f(x)}{g(x)}]=\dfrac{\lim f(x)}{\lim g(x)}=\dfrac{A}{B}(g(x)\not=0,B\not=0) lim[g(x)f(x)]=limg(x)limf(x)=BA(g(x)=0,B=0)

φ ( x ) ≤ ψ ( x ) \varphi(x)\leq\psi(x) φ(x)ψ(x),且 lim ⁡ φ ( x ) = A , lim ⁡ ψ ( x ) = B \lim \varphi(x)=A,\lim\psi(x)=B limφ(x)=A,limψ(x)=B,则 A ≤ B A \leq B AB

常见函数极限

lim ⁡ x → x 0 c = c \lim\limits_{x\to x_0}c=c xx0limc=c c c c 为常数)
lim ⁡ x → x 0 x a = x 0 a \lim\limits_{x\to x_0}x^a=x_0^a xx0limxa=x0a a a a 为常数, x 0 x_0 x0 属于幂函数 y = x a y=x^a y=xa 的定义域)
lim ⁡ x → 0 sin ⁡ x x = 1 \lim\limits_{x\to 0}\dfrac{\sin x}{x}=1 x0limxsinx=1

lim ⁡ x → x 0 e x − 1 x = 1 \lim\limits_{x\to x_0}\dfrac{e^x-1}{x}=1 xx0limxex1=1

函数极限定理

lim ⁡ x → x 0 f ( x ) \lim\limits_{x\to x_0}f(x) xx0limf(x) 存在,那么这个极限唯一。
lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to x_0}f(x)=A xx0limf(x)=A,那么存在常数 M > 0 M>0 M>0 δ > 0 \delta>0 δ>0,使得当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ 时,有 ∣ f ( x ) ∣ ≤ M |f(x)|\leq M f(x)M
lim ⁡ x → x 0 f ( x ) \lim\limits_{x\to x_0}f(x) xx0limf(x) 存在, { x n } \{x_n\} {xn} 为函数 f ( x ) f(x) f(x) 的定义域内一收敛于 x 0 x_0 x0 的序列,满足 x n ≠ x 0 ( n ∈ N + ) x_n\not=x_0(n\in\mathbb{N}_+) xn=x0(nN+),则相应函数值序列 { f ( x n ) } \{f(x_n)\} {f(xn)} 必收敛,且 lim ⁡ n → ∞ f ( x n ) = lim ⁡ x → x 0 f ( x ) \lim\limits_{n\to \infty}f(x_n)=\lim\limits_{x\to x_0}f(x) nlimf(xn)=xx0limf(x)

导数

导数定义

平均变化率 x 0 , x 1 x_0,x_1 x0,x1 为函数 y = f ( x ) y=f(x) y=f(x) 定义域内两点, Δ x = x 0 − x 1 , Δ y = f ( x 0 ) − f ( x 1 ) \Delta x = x_0-x_1,\Delta y =f(x_0)-f(x_1) Δx=x0x1,Δy=f(x0)f(x1)。则函数 y = f ( x ) y=f(x) y=f(x) 在区间 [ x 0 , x 1 ] [x_0,x_1] [x0,x1] 上的平均变化率为:
Δ y Δ x = f ( x 1 + Δ x ) − f ( x 1 ) Δ x \frac{\Delta y}{\Delta x}=\frac{f(x_1+\Delta x)-f(x_1)}{\Delta x} ΔxΔy=Δxf(x1+Δx)f(x1)

瞬时变化率:函数 y = f ( x ) y=f(x) y=f(x) x 0 x_0 x0 附近有定义,当自变量 x = x 0 x = x_0 x=x0 附近改变量为 Δ x \Delta x Δx 时, f ( x 0 ) f(x_0) f(x0) 改变量为 f ( x 0 + Δ x ) − f ( x 0 ) f(x_0+\Delta x)-f(x_0) f(x0+Δx)f(x0)。如果 δ x \delta x δx 趋近于 0 0 0 时,平均变化率趋近趋近于一个数 l l l,那么 x = x 0 x=x_0 x=x0 处瞬时变化率为 l l l,写作 lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x = l \lim_{\Delta x\to0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} =l limΔx0Δxf(x0+Δx)f(x0)=l

函数在 x 0 x_0 x0 处瞬时变化率通常称为 f ( x ) f(x) f(x) x = x 0 x = x_0 x=x0导数,记做 f ′ ( x 0 ) f'(x_0) f(x0),有:

f ′ ( x 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x_0)=\lim_{\Delta x\to0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} f(x0)=Δx0limΔxf(x0+Δx)f(x0)

导函数:若函数 y = f ( x ) y=f(x) y=f(x) 的导函数为 g ( x ) g(x) g(x),则 ∀ x , g ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x \forall x,g(x)=\lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x} x,g(x)=limΔx0Δxf(x+Δx)f(x)。一般来说, f ( x ) f(x) f(x) 导函数为 f ′ ( x ) f'(x) f(x)

连续:对于函数 f ( x ) f(x) f(x),若在 x x x lim ⁡ x → x 0 + f ( x ) = lim ⁡ x → x 0 − f ( x ) \lim\limits_{x\to {x_0}^+}f(x)=\lim\limits_{x\to {x_0}^-}f(x) xx0+limf(x)=xx0limf(x),则 f ( x ) f(x) f(x) x x x 处是连续的。

可导:对于函数 f ( x ) f(x) f(x),若在 x x x f + ′ ( x ) = f − ′ ( x ) f'_+(x)=f'_-(x) f+(x)=f(x),则 f ( x ) f(x) f(x) x x x 处是可导的。

常见函数的导数

f ( x ) = c , f ′ ( x ) = 0 f(x)=c,f'(x)=0 f(x)=c,f(x)=0
f ( x ) = x a , f ′ ( x ) = a x a − 1 f(x)=x^a,f'(x)=ax^{a-1} f(x)=xa,f(x)=axa1
f ( x ) = a x , f ′ ( x ) = a x ln ⁡ a f(x)=a^x,f'(x)=a^x\ln a f(x)=ax,f(x)=axlna f ( x ) = e x , f ′ ( x ) = e x f(x)=e^x,f'(x)=e^x f(x)=ex,f(x)=ex
f ( x ) = log ⁡ a x , f ′ ( x ) = 1 x ln ⁡ a f(x)=\log_ax,f'(x)=\dfrac{1}{x\ln a} f(x)=logax,f(x)=xlna1 f ( x ) = ln ⁡ x , f ′ ( x ) = 1 x f(x)=\ln x,f'(x)=\dfrac{1}{x} f(x)=lnx,f(x)=x1
f ( x ) = sin ⁡ x , f ′ ( x ) = cos ⁡ x f(x)=\sin x,f'(x)=\cos x f(x)=sinx,f(x)=cosx
f ( x ) = cos ⁡ x , f ′ ( x ) = − sin ⁡ x f(x)=\cos x,f'(x)=-\sin x f(x)=cosx,f(x)=sinx

导数的运算

( f ( x ) ± g ( x ) ) ′ = f ′ ( x ) ± g ′ ( x ) (f(x)\pm g(x))'=f'(x)\pm g'(x) (f(x)±g(x))=f(x)±g(x)
( f ( x ) g ( x ) ) ′ = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) (f(x)g(x))'=f'(x)g(x)+f(x)g'(x) (f(x)g(x))=f(x)g(x)+f(x)g(x)
( C f ( x ) ) ′ = C f ′ ( x ) (Cf(x))'=Cf'(x) (Cf(x))=Cf(x)
( f ( x ) g ( x ) ) ′ = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) g 2 ( x ) ( g ( x ) ≠ 0 ) (\dfrac{f(x)}{g(x)})'=\dfrac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}(g(x)\not=0) (g(x)f(x))=g2(x)f(x)g(x)f(x)g(x)(g(x)=0)

复合函数求导

若对于所有 x x x f ( g ( x ) ) f(g(x)) f(g(x)) g ( x ) g(x) g(x) 皆可导,则 [ f ( g ( x ) ) ] ′ = f ′ ( g ( x ) ) ⋅ g ′ ( x ) [f(g(x))]'=f'(g(x))\cdot g'(x) [f(g(x))]=f(g(x))g(x)

导数的几何意义

f ( x ) f(x) f(x) x 0 x_0 x0 处导数的几何意义为其在 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0)) 处切线的斜率。

所以,曲线 f ( x ) f(x) f(x) ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0)) 处切线方程可以如下计算:

  1. 求导,求出 y = f ( x ) y=f(x) y=f(x) x = x 0 x=x_0 x=x0 处导数 f ( x 0 ) f(x_0) f(x0)
  2. 已知切点坐标和斜率,求出切线方程。

( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0)) 处切线平行于 y y y 轴,则方程为 x = x 0 x = x_0 x=x0

曲线的切线不一定与曲线只有一个交点
在点 P P P 的切线和过点 P P P 的切线是不同的概念。

二阶导数

定义

一阶导数的导数被称为二阶导数,二阶导数的导数称为三阶导数,以此类推,对一个函数求导 n n n 次的函数称为N阶导数

一阶导数写作 f ′ ( x ) f'(x) f(x),二阶写作 f ′ ′ ( x ) f''(x) f′′(x),导数的阶数可以通过 ′ ' 的个数表示, n n n 阶导数也可以写作 f ( n ) ( x ) f^{(n)}(x) f(n)(x)

在高中仅考察二阶导数,二阶导数的几何意义为切线斜率的变化率

凹函数与凸函数

凹函数:若 f ( x ) f(x) f(x) 在区间 I I I 上连续,且对于 x 1 < x 2 ∈ I x_1<x_2 \in I x1<x2I,有 f ( x 1 + x 2 2 ) < f ( x 1 ) + f ( x 2 ) 2 f(\dfrac{x_1+x_2}{2})<\dfrac{f(x_1)+f(x_2)}{2} f(2x1+x2)<2f(x1)+f(x2)。若图像为凹函数,则区间 I I I 上二阶导数大于 0 0 0
在这里插入图片描述

凸函数:若 f ( x ) f(x) f(x) 在区间 I I I 上连续,且对于 x 1 < x 2 ∈ I x_1<x_2 \in I x1<x2I,有 f ( x 1 + x 2 2 ) > f ( x 1 ) + f ( x 2 ) 2 f(\dfrac{x_1+x_2}{2})>\dfrac{f(x_1)+f(x_2)}{2} f(2x1+x2)>2f(x1)+f(x2)。若图像为凸函数,则区间 I I I 上二阶导数小于 0 0 0
在这里插入图片描述

隐函数求导

隐函数定义

方程 F ( x , y ) = 0 F(x,y) = 0 F(x,y)=0 确定的 x , y x,y x,y 中,若 y y y x x x 的函数,则称 y y y x x x 的隐函数。
有时可以从 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0 解出 y = f ( x ) y=f(x) y=f(x),但有时不可以,如: y − sin ⁡ y + x = 0 y-\sin y+x=0 ysiny+x=0

隐函数求导

若要对 F ( x , y ) F(x,y) F(x,y) 求导,则将 y y y 当做一个函数来求导,例如

2 x sin ⁡ y + x 3 = 0 2x\sin y+x^3=0 2xsiny+x3=0

求导后则为:

2 sin ⁡ y + 2 x sin ⁡ y ⋅ y ′ + 3 x 2 = 0 2\sin y+2x\sin y\cdot y'+3x^2=0 2siny+2xsinyy+3x2=0

这时,若要计算点 ( x , y ) (x,y) (x,y) 处导数,就直接将 x , y x, y x,y 带入即可求出 y ′ y' y

洛必达法则

lim ⁡ x → x 0 f ( x ) g ( x ) \lim\limits_{x\to x_0} \dfrac{f(x)}{g(x)} xx0limg(x)f(x) 0 0 \dfrac{0}{0} 00 ∞ ∞ \dfrac{\infty}{\infty} 类型的,则可以用洛必达法则

洛必达法则:

lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) \lim\limits_{x\to x_0} \dfrac{f(x)}{g(x)}=\lim\limits_{x\to x_0}\dfrac{f'(x)}{g'(x)} xx0limg(x)f(x)=xx0limg(x)f(x)

0 ⋅ ∞ , 1 ∞ , 0 ∞ , ∞ − ∞ 0\cdot\infty,1^\infty,0^\infty,\infty-\infty 0,1,0,,等都可以转化成 0 0 \dfrac{0}{0} 00 ∞ ∞ \dfrac{\infty}{\infty}

导数应用

函数单调性

f ( x ) f(x) f(x) 在一段区间 I I I 内,有 f ′ ( x ) > 0 f'(x)>0 f(x)>0,则 f ( x ) f(x) f(x) I I I 上递增。
f ( x ) f(x) f(x) 在一段区间 I I I 内,有 f ′ ( x ) < 0 f'(x)<0 f(x)<0,则 f ( x ) f(x) f(x) I I I 上递减。

函数极值

定义

若在 x 0 x_0 x0 附近都有 f ( x ) < f ( x 0 ) f(x)<f(x_0) f(x)<f(x0),则 x 0 x_0 x0 f ( x ) f(x) f(x) 的一个极大值点, f ( x 0 ) f(x_0) f(x0) f ( x ) f(x) f(x) 的一个极大值。
若在 x 0 x_0 x0 附近都有 f ( x ) > f ( x 0 ) f(x)>f(x_0) f(x)>f(x0),则 x 0 x_0 x0 f ( x ) f(x) f(x) 的一个极小值点, f ( x 0 ) f(x_0) f(x0) f ( x ) f(x) f(x) 的一个极小值。

求极值

f ( x ) f(x) f(x) 的导数 f ′ ( x ) f'(x) f(x) x 0 x_0 x0 处从正数变成负数,则 f ( x ) f(x) f(x) x 0 x_0 x0 处有极大值。
f ( x ) f(x) f(x) 的导数 f ′ ( x ) f'(x) f(x) x 0 x_0 x0 处从负数变成正数,则 f ( x ) f(x) f(x) x 0 x_0 x0 处有极小值。

最值

若要求 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 区间内最值,则先求出 f ( x ) f(x) f(x) 所有极值,然后用 f ( x ) f(x) f(x) 的极值与 f ( a ) , f ( b ) f(a),f(b) f(a),f(b),指比较。取最值即可。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值