本文主要介绍 AI 智慧农业模型方案,涵盖智慧农业概述、信息化建设、成功案例分享、自身优势以及智慧投资方案等内容。通过分析现状、阐述发展背景和意义,介绍方案中信息化的各个环节,展示实际案例,突出优势,探讨投资前景,全面呈现 AI 智慧农业模型的全貌,为农业从业者和关注农业发展的人士提供参考。
1. 智慧农业概述
1.1 现状分析
我国农业存在生产分散、规模小,现代农业经济组织发展滞后,融资困难,流通环节多、损耗大、成本高,信息不对称以及农产品缺乏有效分级体系等问题。与美国、荷兰、以色列等农业发达国家相比,在规模化、智能化、科技应用等方面存在差距。传统农业依赖人工管理,技术手段落后;现代农业虽有进步,但在数据管理和分析平台的智能化、灾害预警等方面仍需提升;智慧农业则能实现多样传感数据的采集、智能处理和远程控制等 。
1.2 发展背景
土地流转推动种养殖业规模经营,提升了农业的规模化、集约化和市场化程度。城市化进程加快,城乡融合互动加强,休闲创意农业快速发展,新农业业态不断涌现,从业人员增多。农畜产品安全问题受到广泛关注,促使农业生产向更安全、可追溯的方向发展。国家持续加大对农业的支持和投入,重视信息化建设及信息服务。
1.3 发展意义
政府能全面掌握农业生产资源和数据,监督农产品生产和质量追溯,整合资源,为农场和农民提供高效服务。通过封闭生鲜农产品流通体系,实行严格的准入管理和全程监控,确保农产品质量安全,实现从基地到餐桌的全程可追溯。借助信息化手段,掌握生产和销售信息,合理预测种植规模和上市时间,保障农产品稳定供给。缩短流通环节,降低物流成本和果菜损耗,降低终端销售价格,增加农民收入,推动果蔬品牌塑造和产业升级。通过建设农业服务平台,健全农业经济体系,完善社会服务体系;建立农业电商平台,平衡供需关系;建立农业知识库和专家库,为农业生产提供知识和技术支持。
1.4 国家政策
国家出台一系列政策推动农业信息化发展,包括农业政务信息化、服务信息化、生产科技化和贸易信息化。《中国制造 2025》和《十三五规划》等政策文件强调应用现代信息技术推动农业全产业链改造升级,健全农产品质量安全监管体系和农业社会化服务体系 。
2. 智慧农业信息化
2.1 信息共享
通过建设监控视频、传感器、智能控制系统和网络,采集农业数据,建立农业综合数据库,实现数据交换与整合、共享。将云计算、物联网等技术应用于农业,建成集多种应用为一体的云平台,接入智慧城市建设标准。该平台可实现质量溯源、应急指挥、病虫害防控等功能,为农业生产提供多方面支持,同时进行大数据应用分析,辅助决策。
2.2 高效存储
利用数据云处理技术统一分类处理信息流,降低成本,提高效率;通过数据采集感知技术监测农作物生长状态等;融合通信技术实现多种通信技术协作;运用数据库及 WEB 服务技术进行农业生产信息管理和农产品在线订购配送等后台管理;借助农业智能决策技术为农业生产各环节提供决策依据。云服务在农业领域应用广泛,具有多种服务形式和内容,能满足不同主体的信息化需求,且具有便捷、安全、智能、差异化服务等优势。云归档、云存储等技术可统一管理异构资源,提高资源利用率,降低业务部署成本,提供业务孵化、开发测试等能力。以温室为例,综合利用多种系统可建成具有示范意义的温室。
2.3 网络安全
信息安全具有可靠性、可用性、保密性等特征,可自适应网络安全模型 P2DR 从网络运行角度保障安全。农业网络安全需防止内部信息外泄、监控网络访问、监测流量、防范病毒和 Dos/DDos 攻击等,通过数据加密、数字签名、身份认证、防火墙、病毒查杀、入侵检测等技术进行防护,并实现内网外网隔离。
2.4 运营管理
涵盖财务管理、预算管理、物流管理等多方面,通过 H—ERP 基础平台实现人、财、物的综合管理。从规范达成、整体运营、质量分析等多个维度进行管理和分析,涉及服务层、应用层等多个层面,通过系统应用管理、任务管理等功能实现对环境监测、设备控制等的管理,支持多终端操作,满足不同场景需求。
2.5 监控管理
对软件、用户、审计等进行管理,展示性能和故障情况,通过大屏显示、移动终端等进行监控和管理。实现对服务器、数据库、网络等多种设备和资源的统一管理,保障应用性能,支持多数据中心集中维护,简化运维工作。
2.6 移动农业
基于 VPDN 技术和 3G/4G 网络,实现远程接入和多终端支持,通过 PKI/CA 认证体系等确保安全可靠,数字证书受法律保护。农委办公人员可随时随地访问办公系统,提高工作效率。农业移动执法具备查看案卷信息、地图浏览、案卷办理等多种业务功能,通过特定流程实现执法数据的高效处理和管理。
3. 成功案例分享
贵州茅台集团对 80 万亩高粱种植进行全方位管理,包括计划种植、生长过程监管、检测、收购等环节。通过结合土壤和环境因素推荐种植作物,制定种植计划;完善产品质检和溯源体系;利用视频监控和物联传感设备监管生长过程;管理收购订单,分析收购价格等,实现高粱种植的高产化、智能化、精细化管理,保障酒的品质。该案例中涉及大数据平台及应用,涵盖角色管理、流程管理等多种功能,实现系统对接和商业分析应用,对基地进行考评,利用多方面数据进行关联分析和产量预测等 。
4. 智慧农业概述
智慧农业是农业未来趋势,应注重服务农业,而非替代农业,要以服务三农为宗旨,推动农业智慧化变革 。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈