OpenAI又开源了!仅0.4B,给模型大瘦身

OpenAI开源Circuit-Sparsity技术,通过强制99.9%权重为零,使大模型内部形成紧凑可读的"电路",显著提升可解释性。稀疏模型神经元激活具有明确语义,电路规模比密集模型小16倍,解决了AI"黑箱"问题。尽管运算速度慢100-1000倍,但"桥梁网络"方案为技术落地提供了可能,标志着AI可解释性领域的重要突破。


99.9%权重清零,大模型内部思维变“透明”。

智东西12月15日报道,昨天,OpenAI开源新模型Circuit-Sparsity,模型参数量仅0.4B, ** 99.9%**的权重为零。

▲Circuit-Sparsity开源(来源:Hugging Face)

这个技术试图解决模型的可解释性问题,简单来说就是回答“模型为什么做出这个决策?”以及“它是如何得出这个结果的?”这两个问题。

在AI飞速发展的今天,大语言模型(LLM)虽然表现出了惊人的能力,但其内部运作机制始终像一个神秘的“黑箱”。

我们不知道它为何做出某个回答,也不清楚它是如何从海量数据中提取知识的。这种不可解释性,成为了AI在医疗、金融、法律等高风险领域落地的重大障碍。

对此,OpenAI研究团队训练出了一个权重稀疏的Transformer模型,强制模型权重矩阵中**99.9%权重为零,仅保留0.1%**非零权重。

在这项研究中,研究团队在模型内部形成了紧凑且可读的**“电路”(Circuits)**,每个电路都仅保留了保证模型性能的关键节点,神经元的激活变得具有明确的语义。

有外网网友称这一技术让当下的MoE(混合专家模型)走到了尽头,并说“我们一直以来都将权重隔离到‘专家’中,以此粗略地近似稀疏性,仅仅是为了满足稠密矩阵核的要求。”

▲外网评价(图源:X)

更有网友将这项研究形容为将模型“减肥到只剩骨架”,还说这项研究就好像打开了黑匣子,不试图解开稠密模型而是直接构建稀疏模型,正是这项研究有趣的地方。

▲外网评价(图源:X)

但有些网友却不这么认为,称其没有看出MoE模型为何会因此走到尽头,并进一步解释说这一技术是针对XAI(可解释AI)的,它的训练成本要高100-1000倍,回到“研究时代”并不意味着让事情变得更复杂。

▲外网评价(图源:X)

该模型目前受限于计算效率瓶颈,其运算速度较密集模型慢100至1000倍,将该技术直接应用于千亿参数级别的前沿大模型,现阶段尚不具备可行性。

开源地址:

Github:

https://github.com/openai/circuit_sparsity

Hugging Face:

https://huggingface.co/openai/circuit-sparsity

01***.***

训练稀疏Transformer

OpenAI理清模型内部计算

要理解这项研究的突破,首先需要明白传统大模型为何难以解释。

在标准的密集模型(Dense Models)中,神经网络存在一种被称为**“超级位置”(Superposition)**的现象。简单来说,为了存储海量的信息,模型被迫让单个神经元或权重矩阵同时编码多个完全不同的概念。

这种特征纠缠导致了严重的后果,例如模型的决策不可追溯和逻辑混乱,当模型输出一个结果时,我们无法确定是哪个具体的“概念”在起作用。

针对以上问题,以前的研究通常从试图拆解密集、纠结的网络开始。但OpenAI团队采取了一种“反直觉”的策略,即训练权重稀疏的Transformer模型,强制模型权重矩阵中**99.9%权重为零,仅保留0.1%**非零权重。

强制模型限制了模型只能使用其神经元之间极少的可能连接,而这一简单的更改,几乎从根本上理清了模型的内部计算。

▲每个神经元只与下一个层的几个神经元相连(图源:OpenAI技术博客)

具体的技术手段包括:

**1、动态剪枝与稀疏约束:**在训练过程中,系统会动态执行“剪枝”操作,每一步优化后仅保留绝对值最大的权重(Top-K稀疏化)。

**2、激活稀疏化:**在残差流、注意力键/值矩阵等关键位置,研究团队引入了AbsTopK激活函数,强制仅保留前25%的激活值。

**3、架构微调:**为了配合稀疏化,研究团队用RMSNorm替代了传统的LayerNorm,避免归一化操作破坏稀疏性,同时引入了“Bigram表”来处理简单的模式匹配,从而释放模型的主干容量去处理复杂的逻辑推理。

02***.***

模型内部形成紧凑可读的“电路”

规模缩减16倍

这项技术的最大成果,是模型内部形成了紧凑且可读的**“电路”(Circuits)**。

在传统密集模型中,完成一个任务可能需要成千上万个节点协同工作,逻辑分散且难以捕捉。而在稀疏模型中,研究团队观察到了极简的计算路径:

1、极简的逻辑单元:例如在处理“字符串闭合”任务时,模型仅用12个节点就构建了一个完美的电路,清晰地展示了它是如何检测单引号或双引号是否闭合的。

**2、可读的特征:**神经元的激活变得具有明确的语义。研究人员发现了一些神经元专门负责检测“单引号”,另一些则像“计数器”一样精确地追踪列表的嵌套深度。

3、规模缩减16倍:对比实验显示,在相同的任务损失下,稀疏模型的电路规模比密集模型小了16倍。这意味着解读AI思维的难度降低了整整一个数量级。

▲稀疏模型的电路规模比密集模型小了16倍(图源:OpenAI技术论文)

为了验证这些电路的真实性,团队进行了“均值消融”实验。结果证明,移除非电路节点对任务几乎没有影响,而一旦移除电路中的关键节点,模型性能就会瞬间崩塌。这证实了这些电路确实是模型执行任务的“必经之路”。

▲“均值消融”实验(图源:OpenAI技术论文)

03***.***

稀疏模型解读力强但速度慢千倍

OpenAI提出“桥梁网络”

为了测量稀疏模型计算的解耦程度。研究团队设计了一套简单的算法任务。对于每个模型,他们都将其剪裁成了仍能执行该任务的最小电路,并检查了该电路的简洁程度。

研究团队发现,用规模更大、稀疏度更高的模型进行训练后,就能够依托结构更简洁的电路,构建出性能更强的模型。

▲模型的可解释性与能力的对比图(图源:OpenAI技术博客)

从模型可解释性与性能的对比图可见,在稀疏模型规模固定的前提下,提升稀疏性,也就是将更多权重置零,虽会导致模型性能有所下降,但能显著增强其可解释性。

尽管稀疏模型在可解释性方面优势突出,但其应用目前受限于计算效率瓶颈:稀疏矩阵运算无法借助Tensor Cores实现加速,运算速度较密集模型慢100至1000倍。这意味着,将该技术直接应用于千亿参数级别的前沿大模型,现阶段尚不具备可行性。

为此,研究团队提出了“桥梁网络”(Bridges)方案:

1、编码-解码映射:在稀疏模型与预训练的密集模型之间插入一个编码器-解码器对。

2、跨模型干预:编码器将密集模型的激活映射到稀疏空间,解码器则反向转换。

“桥梁网络”(Bridges)方案可以在“透明”的稀疏模型上修改某个特征,然后通过桥梁将这种扰动映射回“黑箱”的密集模型,从而实现对现有大模型的可解释性行为编辑。

04***.***

结语:OpenAI提出稀疏化新路径

让大模型从“黑箱”走向“可解释”

OpenAI研究团队的这项研究,标志着AI可解释性领域的一项重要突破,也印证了理解AI并非遥不可及的目标。

研究团队在论文博客中称,这项工作是迈向更宏大目标的早期探索。接下来,他们计划将相关技术扩展至更大规模的模型,同时进一步解释更多模型的行为逻辑。

为解决稀疏模型训练效率低下的问题,团队提出了两个后续研究方向:一是从现有密集模型中提取稀疏电路,替代“从头训练稀疏模型”的传统方式;二是研发更高效的可解释性模型训练技术,推动相关技术更易落地生产。

“我们的目标是逐步扩大可可靠解释的模型范围,同时打造相关工具,让未来的AI系统更易于分析、调试与评估。”研究团队在论文博客中写道。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
在这里插入图片描述

在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型实战项目&项目源码👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。(全套教程文末领取哈)
在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
在这里插入图片描述

为什么分享这些资料?

只要你是真心想学AI大模型,我这份资料就可以无偿分享给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

这些资料真的有用吗?

这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值