孙凌云
以下内容均由Ai生成,仅供参考!!! |
研究方向
- 设计认知:在草图思维的形式化建模等方面进行研究,尝试理解设计过程中思维的形式化表达,以帮助计算机更好地辅助设计。
- 设计智能:利用人工智能技术,如在创意设计的众包创新、人工智能内容生成等方面开展研究,探索如何通过智能算法提升设计的效率和创新性。
- 信息产品设计:聚焦于信息产品相关的设计研究,考虑如何让信息产品更好地满足用户需求,提升用户体验。
- 人机交互:研究多感知通道的情感信息表达,以及多通道人机交互中感觉刺激的模拟方法等,致力于实现更自然、高效的人机交互方式。
设计作品成果
- 短视频智能设计Alibaba Wood:是浙大团队与阿里团队合作研发的智能短视频机器人,旨在为用户提供简单、智能、高效的一站式短视频营销解决方案。
- EmoEden:一种基于生成式AI的自闭症儿童情感训练工具,能够基于儿童的个人经历和偏好生成个性对话,并提供类人的情感反馈,训练儿童有效地识别情感和表达情感。
- KiPneu:一款仿生机器人启蒙教育玩具,儿童可以对充气模块进行自由组合,创造出可柔性运动的气动仿生机器人,还可通过物理气阀对动作进行“编程”。
- Touch - n - Go:一种一体化3D打印表面连接结构技术,用户可以自定义不同的连接强度和连接反馈,还支持动态的连接方式,实现旋转、平移等运动状态。
- SimUser:基于大语言模型的用户模拟与界面评估工具,通过思维链等提示词工程方法,模拟用户与移动应用界面在特定使用场景中的交互过程,帮助设计师深入了解不同用户的需求。
- ChatScratch:专为低龄儿童设计的图形化编程教育工具,将故事创作、涂鸦绘画等创意活动与编程结合,通过图形化界面使儿童能够创作出个性化的多媒体作品,并提供精准且个性化的学习指导。
- BIDTrainer:一种由大语言模型驱动的仿生设计教育方法,通过交互式问答帮助学习者理解结构化的仿生设计案例,并指导他们推理出新的设计方案,还包括对学习者设计方案的评估,形成仿生设计教学闭环。
此外,孙凌云教授还获得了包括好设计、红点至尊设计大奖、IF奖、中国智造大奖10余项,以及2021 WAIC世界人工智能大会最高奖卓越人工智能引领者奖、2022 CCF科技进步二等奖等多项荣誉。
论文成果
在《Design Studies》《中国科学:信息科学》《机械工程学报》等期刊和会议发表论文70余篇。例如《多通道人机交互中感觉刺激的模拟方法研究综述》,发表于《包装工程》2023年4月第8期,该论文对多通道人机交互中感觉刺激模拟方法的研究现状进行梳理,总结相关技术原理与方法,为后续研究和实践提供参考。
个人简介页的精选的6篇文章围绕设计与技术融合的主题,从机器学习赋能产品设计、图像生成与处理、广告图像色彩设计、众包智能设计以及文化产品设计等多个角度进行研究,为相关领域提供了创新方法和理论依据。
- 《Developing a Toolkit for Prototyping Machine Learning-Empowered Products: The Design and Evaluation of ML-Rapid》:发表于International Journal of Design 2020年第14卷第2期。作者Lingyun Sun等人开发了用于机器学习赋能产品原型设计的工具包ML-Rapid。文中阐述了其设计过程,通过特定方法构建工具包框架,还对该工具包进行评估,分析其在实际应用中的表现,旨在为机器学习与产品设计的融合提供高效工具。
- 《ML Lifecycle Canvas: Designing Machine Learning-Empowered UX with Material Lifecycle Thinking》:刊载于Human-Computer Interaction 2020年。Zhibin Zhou、Lingyun Sun等人提出将机器学习视为具有生命周期的设计材料的设计方法(MLT),并开发了ML生命周期画布(Canvas)这一概念设计工具。该工具结合了共同创造者和机器学习生命周期的可视化表示,通过设计学生参与“通过设计进行研究”的过程进行迭代,在设计工作坊的评估显示其有助于弥合用户体验和机器学习之间的差距。
- 《SmartPaint: a co-creative drawing system based on generative adversarial networks》:发表在Frontiers of Information Technology & Electronic Engineering 2019年第20卷。Lingyun Sun、Pei Chen等人开发了基于生成对抗网络(GANs)的协同创意绘图系统SmartPaint。针对现有AI难以将用户草图转化为美观绘画的问题,该系统通过训练GAN学习卡通图像的风格、语义和空间关系,接收草图输入并输出创意精美的绘画,实验证明其能成功生成高质量卡通画。
- 《Automatic advertising image color design incorporating a visual color analyzer》:发表于Journal of Computer Languages 2019年第55卷。Wei-Tao You、Ling-Yun Sun等人提出一种数据驱动的广告图像自动色彩设计方法。收集13,000张标注广告图像构建两个概率模型,开发视觉颜色分析器收集用户颜色偏好,应用于关键词、产品和用户引导的三种着色任务,经感知研究验证,该方法生成的颜色在美学外观上优于其他模型和非专业学生创作的颜色。
- 《A Survey of Users’ Expectations Towards on-body Companion Robots》:来自ACM Conference on Designing Interactive Systems 2019 (DIS 2019)会议。Hao Jiang、Lingyun Sun等人对用户对贴身陪伴机器人的期望进行调查。文中或从用户需求、使用场景、功能期望等方面入手,收集和分析数据,为贴身陪伴机器人的设计提供用户需求方面的参考,有助于设计出更符合用户期望的产品。
- 《Crowdsourcing intelligent design》:刊登于Frontiers of Information Technology & Electronic Engineering 2018年第19卷第1期。Wei Xiang、Ling-yun Sun等人提出“灵活众包设计”方法。鉴于现有设计智能方法在创造原创想法上的局限,该方法采用培育过程整合众包参与者的想法以提高设计质量。文章介绍了其典型流程、细化任务、影响想法发展的因素、计算想法发展潜力的方法及两个应用,总结了众包智能设计的能力。
Google scholar(2024-2025部分)上的一些文章
该网页展示的是浙江大学孙凌云的科研成果,2024 - 2025年有多篇论文发表或处于预印本阶段,涵盖医疗、设计、音乐、图形等多个领域,运用生成式AI、自监督学习等前沿技术开展研究。
- 医疗健康领域:《Integrating Sequence and Image Modeling in Irregular Medical Time Series Through Self-Supervised Learning》(2025年)利用自监督学习整合序列和图像建模技术,处理不规则医疗时间序列,为医疗数据分析和疾病预测提供新方法。通过挖掘医疗数据中的潜在信息,辅助医生进行更精准的诊断和治疗决策。
- 设计领域
- 《Understanding Design Fixation in Generative AI》(2025年)研究生成式AI中的设计固着问题,剖析其产生原因、影响因素和表现形式,为提升设计效率和创新性提供理论支持,帮助设计师更好地利用生成式AI进行创意设计。
- 《GPSdesign: Integrating Generative AI with Problem-Solution Co-Evolution Network to Support Product Conceptual Design》(2025年)将生成式AI与问题 - 解决方案共同进化网络相结合,提出GPSdesign方法,支持产品概念设计,为产品设计提供新的思路和工具,提高设计的质量和效率。
- 《How Generative AI supports human in conceptual design》(2025年)探讨生成式AI在概念设计中对人类的支持作用,分析其在激发创意、提供设计方案等方面的优势和应用方式,推动设计领域的智能化发展。
- 《A Conceptual Design Method Based on Concept–Knowledge Theory and Large Language Models》(2025年)基于概念 - 知识理论和大语言模型提出概念设计方法,借助大语言模型强大的知识理解和生成能力,为概念设计提供更丰富的知识和创意来源。
- 《StepIdeator: Utilizing Mixed Representations to Support Step-by-step Design With Generative AI》(2024年)利用混合表示和生成式AI支持逐步设计,通过整合不同类型的设计表示方式,使设计过程更加灵活和高效,提升设计的质量和创新性。
- 《Toward Controllable Generative Design: A Conceptual Design Generation Approach Leveraging the Function–Behavior–Structure Ontology and Large Language Models》(2024年)借助功能 - 行为 - 结构本体和大语言模型,实现可控的生成式设计,为设计人员提供更具可控性和可解释性的设计方案生成方法。
- 《DesignFusion: Integrating Generative Models for Conceptual Design Enrichment》(2024年)通过集成生成模型丰富概念设计,探索不同生成模型在概念设计中的协同作用,为设计师提供更多样化和创新性的设计方案。
- 音乐领域
- 《GVMGen: A General Video-to-Music Generation Model with Hierarchical Attentions》(2025年)提出具有分层注意力机制的通用视频到音乐生成模型GVMGen,实现根据视频内容生成匹配的音乐,在多媒体创作、影视配乐等领域具有广泛的应用前景。
- 《Personalized Dynamic Music Emotion Recognition with Dual-Scale Attention-Based Meta-Learning》(2024年)基于双尺度注意力元学习实现个性化动态音乐情感识别,提高音乐情感识别的准确性和个性化程度,为音乐推荐、音乐治疗等应用提供技术支持。
- 教育领域:《MindScratch: A Visual Programming Support Tool for Classroom Learning Based on Multimodal Generative AI》(2024年)基于多模态生成式AI开发MindScratch可视化编程支持工具,用于课堂学习,提升学生的编程学习体验和效果,培养学生的创新思维和编程能力。
- 数据与模型领域:《LAION-SG: An Enhanced Large-Scale Dataset for Training Complex Image-Text Models with Structural Annotations》(2024年)构建增强的大规模数据集LAION-SG,带有结构注释,用于训练复杂的图像 - 文本模型,为图像理解、文本生成等领域的研究提供更丰富的数据支持。
- 图形用户界面领域:《Fragmented Layer Grouping in GUI Designs Through Graph Learning Based on Multimodal Information》(2024年)基于多模态信息的图学习实现图形用户界面(GUI)设计中的碎片化图层分组,优化GUI设计流程,提高界面设计的效率和质量。
- 学习社区领域:《CoRemix: Supporting Informal Learning in Scratch Community With Visual Graph and Generative AI》(2024年)利用视觉图和生成式AI支持Scratch社区的非正式学习,促进社区成员之间的学习和交流,推动创意编程学习社区的发展。
- 3D场景与设计领域
- 《Distilling Diffusion Models to Efficient 3D LiDAR Scene Completion》(2024年)将扩散模型应用于3D LiDAR场景完成任务,提高场景完成的效率和准确性,在自动驾驶、机器人导航等领域具有重要应用价值。
- 《New Fashion: Personalized 3D Design with a Single Sketch Input》(2024年)实现通过单一草图输入进行个性化3D设计,为时尚设计、产品设计等领域提供更便捷、高效的设计方式,满足用户个性化的设计需求。
- 人机交互领域
- 《Play With Morphing Food: Supporting Children-Food Interaction With an Interactive Cooking Toolkit》(2024年)开发交互式烹饪工具包,支持儿童与食物的互动,在儿童教育、饮食健康等方面具有潜在应用价值,促进儿童对食物的认知和健康饮食习惯的养成。
- 《HierVid: Lowering the barriers to entry of interactive video making with a hierarchical authoring system》(2024年)通过分层创作系统降低交互式视频制作的门槛,推动交互式视频的发展,为视频创作、在线教育等领域提供更便捷的创作工具。
- 《A Hybrid Prototype Method Combining Physical Models and Generative Artificial Intelligence to Support Creativity in Conceptual Design》(2024年)结合物理模型和生成式人工智能的混合原型方法,支持概念设计中的创造力,为设计师提供更有效的设计工具和方法,提升概念设计的创新能力 。
著作
这些著作围绕设计领域,分别从智能设计、用户体验设计以及设计的未来发展方向等角度进行了探讨,为相关专业的学习者、从业者提供了理论和实践指导。
- 《设计智能》:孙凌云、向为著,浙江大学出版社2020年出版。本书聚焦“设计智能”,可能深入探讨在人工智能等新兴技术快速发展的背景下,设计领域所发生的变革。内容或许涵盖设计智能的理论基础,如人工智能算法在设计中的应用原理;还会涉及实践案例,展示如何运用智能技术解决设计中的实际问题,提升设计的效率与创新性,推动设计行业向智能化方向发展。
- 《智能产品设计》:孙凌云著,高等教育出版社2020年9月出版。主要围绕智能产品设计展开,详细阐述智能产品设计的流程、方法与原则。书中可能会介绍智能产品设计所需的技术知识,如传感器技术、人机交互技术等;也会分析智能产品的用户需求与体验,通过实际案例讲解如何从概念构思到产品落地,打造满足市场需求的智能产品。
- 《用户体验设计成功之道》:由Jodie Moule著,程时伟、孙凌云译,人民邮电出版社2014年2月出版。本书以用户体验设计为核心,系统介绍用户体验设计的关键要素和成功方法。书中可能会讲解用户研究的方法和技巧,帮助设计师深入了解用户需求和行为;还会涉及界面设计、交互设计等方面的内容,通过实际案例展示如何打造优质的用户体验,提升产品的用户满意度和市场竞争力。
- 《下一代设计》:柴春雷、徐雯洁、孙凌云著,浙江大学出版社2018年出版。该书着眼于设计的未来发展,探讨下一代设计的趋势和特点。可能会分析科技进步、社会变革等因素对设计的影响,提出新的设计理念和方法;也会展示一些前瞻性的设计案例,为设计师和相关从业者提供灵感,引导他们思考和探索设计的未来方向 。