机器学习基石 2.3 Guarantee of PLA

1. Linear Separability

对于一个数据集 D \mathcal{D} D,如果PLA能够停下来并且不犯错误,就称这样的 D \mathcal{D} D为线性可分的。

这里写图片描述

2.PLA Fact: w t \mathbf{w_{t}} wt Gets More Aligned with w f \mathbf{w_{f}} wf

数据集 D \mathcal{D} D是线性可分的,等价于存在一个完美的 w f \mathbf{w_{f}} wf,使得
y n = s i g n ( w t T w n ) y_{n}=sign(\mathbf{w_{t}^T}w_{n}) yn=sign(wtTwn)

这里写图片描述


∀ n ∈ [ 1 , N ] , y n w f T x n > 0 \forall n \in [1,N], y_{n}\mathbf{w_{f}^T}\mathbf{x_{n}}>0 n[1,N],ynwfTxn>0
则对于在第t轮使 w t \mathbf{w_{t}} wt犯错的那个 x n ( t ) \mathbf{x_{n(t)}} xn(t),有

y n ( t ) w f T x n ( t ) ⩾ m i n ( y n w f T x n ) > 0 y_{n(t)}\mathbf{w_{f}^T}\mathbf{x_{n(t)}} \geqslant min(y_{n}\mathbf{w_{f}^T}\mathbf{x_{n}})>0 yn(t)wfTxn(t)min(ynwfTxn)>0

这里写图片描述

这就说明了 w f T w t \mathbf{w_{f}^T}\mathbf{w_{t}} wfTwt这个内积是随着t的增大而不断增大的。

3.PLA Fact: w t \mathbf{w_{t}} wt Does Not Grow Too Fast

这个算法还有一个重要的性质就是犯错了才修正。

这里写图片描述

这里写图片描述

由上面两个结论可以推出

这里写图片描述

证明:
R 2 = m a x ( ∥ x n ∥ 2 ) , ρ = m i n ( y n w f T ∥ w f ∥ x n ) R^2 = max(\|x_{n}\|^2), \rho=min(y_{n}\frac{\mathbf{w_{f}^T}}{\|\mathbf{w_{f}}\|}\mathbf{x_{n}}) R2=max(xn2),ρ=min(ynwfwfTxn)
T = 1 T=1 T=1时,
w f T ∥ w f ∥ w 1 ∥ w 1 ∥ ⩾ w f T ( w 0 + m i n ( y n x n ) ) ∥ w f ∥ ∥ w 0 ∥ 2 + m a x ( ∥ y n x n ∥ 2 ) = w f T m i n ( y n ( t ) x n ( t ) ) ∥ w f ∥ m a x ( ∥ y n x n ∥ 2 ) = ρ R = c o n s t a n t \frac{ \mathbf{w_{f}^T} }{ \|\mathbf{w_{f}}\|} \frac{ \mathbf{w_{1}} }{ \|\mathbf{w_{1}}\| } \geqslant \frac{ \mathbf{w_{f}^T}(\mathbf{w_{0}}+min(y_{n}\mathbf{x_{n}})) }{ \|\mathbf{w_{f}}\| \sqrt{\|\mathbf{w_{0}}\|^2}+max(\|\mathbf{y_{n}x_{n}}\|^2)}= \frac{\mathbf{w_{f}^T}min(y_{n(t)}\mathbf{x_{n(t)}})}{\|\mathbf{w_{f}}\| \sqrt{max(\|\mathbf{y_{n}x_{n}}\|^2)}}=\frac{\rho}{R}=constant wfwfTw1w1wfw02 +max(ynxn2)wfT(w0+min(ynxn))=wfmax(ynxn2) wfTmin(yn(t)xn(t))=Rρ=constant
假设当 T = t T=t T=t时结论成立,当 T = t + 1 T=t+1 T=t+1时,
w f T ∥ w f ∥ w t + 1 ∥ w t + 1 ∥ ⩾ w f T ( w t + m i n ( y n x n ) ) ∥ w f ∥ ∥ w t ∥ 2 + m a x ( ∥ y n x n ∥ 2 ) \frac{ \mathbf{w_{f}^T} }{ \|\mathbf{w_{f}}\|} \frac{ \mathbf{w_{t+1}} }{ \|\mathbf{w_{t+1}}\| } \geqslant \frac{ \mathbf{w_{f}^T}(\mathbf{w_{t}}+min(y_{n}\mathbf{x_{n}})) }{ \|\mathbf{w_{f}}\| \sqrt{\|\mathbf{w_{t}}\|^2}+max(\|\mathbf{y_{n}x_{n}}\|^2)} wfwfTwt+1wt+1wfwt2 +max(ynxn2)wfT(wt+min(ynxn))
又因为
w f T ∥ w f ∥ w t ∥ w t ∥ ⩾ t ⋅ ρ R \frac{ \mathbf{w_{f}^T} }{ \|\mathbf{w_{f}}\|} \frac{ \mathbf{w_{t}} }{ \|\mathbf{w_{t}}\| } \geqslant \sqrt{t}\cdot \frac{\rho}{R} wfwfTwtwtt Rρ

w f T w t = k ρ \mathbf{w_{f}^T}\mathbf{w_{t}}=k\rho wfTwt=kρ

∥ w f ∥ ∥ w t ∥ ⩽ k t R \|\mathbf{w_{f}}\|\|\mathbf{w_{t}}\|\leqslant \frac{k}{\sqrt{t}}R wfwtt kR
带入易得
w f T ∥ w f ∥ w t + 1 ∥ w t + 1 ∥ ⩾ t + 1 ⋅ ρ R \frac{ \mathbf{w_{f}^T} }{ \|\mathbf{w_{f}}\|} \frac{ \mathbf{w_{t+1}} }{ \|\mathbf{w_{t+1}}\| } \geqslant \sqrt{t+1}\cdot \frac{\rho}{R} wfwfTwt+1wt+1t+1 Rρ
得证。

4.Fun Time

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值