Tensorflow2.0 自动微分基础

自动微分(低阶方法)

首先拿线性方程来举例说明基本步骤

  1. 在 with GradientTape 内部 自定义的损失函数
  2. 调用gradient方法对指定变量求导
一阶导数
import numpy as np 

# f(x) = a*x**2 + b*x + c的导数
# 因为是 auto watched ,所以不需要watch, 常量需要watched
x = tf.Variable(0.0,name = "x",dtype = tf.float32) 
a = tf.constant(1.0)
b = tf.constant(-2.0)
c = tf.constant(1.0)

## 这个地方是定义有及 对谁 求导【定义】
with tf.GradientTape() as tape:
    y = a*tf.pow(x,2) + b*x + c
    
### 这个地方是 求导数  【求导】  
dy_dx = tape.gradient(y,x)
print(dy_dx)
tf.print(dy_dx)
二阶导数

二阶导数与一阶导数方法无异,差异就在于内部求一阶,再去求二阶。

x = tf.Variable(2.,name = "x",dtype = tf.float32)
a = tf.constant(1.0)
b = tf.constant(-2.0)
c = tf.constant(1.0)

with tf.GradientTape() as tape2:
    with tf.GradientTape() as tape1:   
        y = a*tf.pow(x,2) + b*x + c
    dy_dx = tape1.gradient(y,x)   
    
## 再对 dy_dx这个函数求导就是 y的二阶导数
dy2_dx2 = tape2.gradient(dy_dx,x)

tf.print(dy_dx)
tf.print(dy2_dx2)
print (dy2_dx2)
利用导数==0 求函数极值

对于一元多次函数来讲,极值点为导数等于的点,那可以利用牛顿法求函数的极值。具体原理推导见 梯度下降与 一阶泰勒展开

# 求f(x) = a*x**2 + b*x + c的最小值
# 使用optimizer.apply_gradients

x = tf.Variable(0.0,name = "x",dtype = tf.float32)
optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)

a = tf.constant(1.0)
b = tf.constant(-2.0)
c = tf.constant(1.0)


for _ in range(1000):
    with tf.GradientTape() as tape:
        y = a*tf.pow(x,2) + b*x + c
    ## 每一轮,都会计算出当前x下的 dy_dx, 
    dy_dx = tape.gradient(y,x)
    
    ## 这一步就是求 x 的 下一个x。参数更新
    optimizer.apply_gradients(grads_and_vars=[(dy_dx,x)])
    
tf.print("y =",y,"; x =",x)

参考教材 eat_tensorflow2_in_30_days

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页