融合A*改进RRT算法的路径规划代码仿真全局路径规划 - RRT算法原理

本文介绍了RRT算法的基本原理及其在复杂环境中的应用,并提出融合A*启发式搜索的改进版本,以优化路径规划。通过随机树扩展和A*代价函数,该算法能提供更优路径,适用于自动驾驶和机器人导航。
摘要由CSDN通过智能技术生成

融合A*改进RRT算法的路径规划代码仿真
全局路径规划 - RRT算法原理
RRT算法,即快速随机树算法(Rapid Random Tree),是LaValle在1998年首次提出的一种高效的路径规划算法。
RRT算法以初始的一个根节点,通过随机采样的方法在空间搜索,然后添加一个又一个的叶节点来不断扩展随机树。
当目标点进入随机树里面后,随机树扩展立即停止,此时能找到一条从起始点到目标点的路径。
算法的计算过程如下:
step1:初始化随机树。
将环境中起点作为随机树搜索的起点,此时树中只包含一个节点即根节点;
stpe2:在环境中随机采样。
在环境中随机产生一个点,若该点不在障碍物范围内则计算随机树中所有节点到的欧式距离,并找到距离最近的节点,若在障碍物范围内则重新生成并重复该过程直至找到;
stpe3:生成新节点。
在和连线方向,由指向固定生长距离生成一个新的节点,并判断该节点是否在障碍物范围内,若不在障碍物范围内则将添加到随机树 中,否则的话返回step2重新对环境进行随机采样;
step4:停止搜索。
当和目标点之间的距离小于设定的阈值时,则代表随机树已经到达了目标点,将作为最后一个路径节点加入到随机树中,算法结束并得到所规划的路径 。


融合A*改进RRT算法的路径规划代码仿真

在现代的自动驾驶系统和机器人导航中,路径规划是

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值