基于YOLOv8的Cityscapes数据集目标检测完整教程:从数据准备到UI界面实现—含论文模板
如果闲麻烦可以直接到文末获取百度网盘链接,然后从链接获取图文演示、代码、论文
📌 一、项目背景与意义
1.1 技术发展背景
随着人工智能技术的蓬勃发展,计算机视觉领域正经历着前所未有的变革。目标检测作为计算机视觉的核心技术之一,在自动驾驶、智能监控、机器人导航等领域发挥着至关重要的作用。特别是在智能交通系统中,准确识别和定位道路上的各种目标对象,如行人、车辆、交通标志等,直接关系到系统的安全性和可靠性。
传统的目标检测方法依赖于手工设计的特征提取器,不仅计算复杂度高,而且在复杂环境下的检测精度往往无法满足实际应用需求。随着深度学习技术的快速发展,基于卷积神经网络的目标检测算法逐渐成为主流,其中YOLO(You Only Look Once)系列算法以其优异的实时性能和检测精度受到广泛关注。
1.2 Cityscapes数据集的重要性
Cityscapes数据集的出现为城市场景下的目标检测研究提供了重要的数据支撑。与传统的实验室环境或简单场景不同,城市环境具有光照变化大、目标密集、遮挡严重等特点,这使得在Cityscapes数据集上训练的模型具有更强的实用价值。通过在这样的真实场景数据上进行训练,我们可以开发出更加鲁棒和实用的目标检测系统。