文件目录
数据集下载:https://www.cityscapes-dataset.com/downloads/
下载 leftImg8bit_trainvaltest.zip
和 gtFine_trainvaltest.zip
,解压后放成如下的格式:
─ {root}
── getfine
── leftImg8bit
── 处理脚本.py
执行:
python 处理脚本.py
生成:
─ {root}
── getfine
── leftImg8bit
── 处理脚本.py
── labels # 存放框图的标签
── images # yolov3+版本的脚本将会拷贝输出图片到这个位置
── yolo_train.txt # 训练样本的路径
── yolo_val.txt # 验证样本的路径
── yolo_test.txt # 测试样本的路径
尽量用linux,路径中不要有中文。
其它的看看下文的代码就好了,注释够详细了
yolo3、yolov5的pytorch版本,请用 这个代码。
处理脚本.py
import json
import os
from pathlib import Path
import re
from tqdm import tqdm
from functools import reduce
def convert_annotation(image_id, paths):
global label_map
def find_box(points): # 该函数用来找出xmin, xmax, ymin ,ymax 即bbox包围框
_x, _y = [float(pot[0]) for pot in points], [float(pot[1]) for pot in points]
return min(_x), max(_x), min(_y), max(_y)
def<