[Python]Cityscapes目标检测标注转YOLO格式

该博客介绍了如何将Cityscapes数据集的目标检测标注转化为适用于YOLO(yolo3和yolov5的pytorch版本)的格式。作者提供了数据集下载链接,并强调了在处理过程中应避免使用含有中文路径的Linux环境。
摘要由CSDN通过智能技术生成

文件目录

数据集下载:https://www.cityscapes-dataset.com/downloads/
在这里插入图片描述
下载 leftImg8bit_trainvaltest.zipgtFine_trainvaltest.zip ,解压后放成如下的格式:

─ {root}
── getfine
── leftImg8bit
── 处理脚本.py

执行:

python 处理脚本.py

生成:

─ {root}
── getfine
── leftImg8bit
── 处理脚本.py
──  labels  # 存放框图的标签
──  images # yolov3+版本的脚本将会拷贝输出图片到这个位置
──  yolo_train.txt  # 训练样本的路径
──  yolo_val.txt # 验证样本的路径
──  yolo_test.txt # 测试样本的路径

尽量用linux,路径中不要有中文。
其它的看看下文的代码就好了,注释够详细了
yolo3、yolov5的pytorch版本,请用 这个代码

处理脚本.py

import json
import os
from pathlib import Path
import re
from tqdm import tqdm
from functools import reduce


def convert_annotation(image_id, paths):
    global label_map

    def find_box(points):  # 该函数用来找出xmin, xmax, ymin ,ymax 即bbox包围框
        _x, _y = [float(pot[0]) for pot in points], [float(pot[1]) for pot in points]
        return min(_x), max(_x), min(_y), max(_y)

    def<
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值