YOLO v8 使用cityscapes数据集进行实例分割任务

本文介绍了如何下载Cityscapes数据集,将其转换为COCO格式,处理多部分实例分割问题,并进一步转为YOLO所需的txt格式,以供深度学习模型训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、数据集下载

Dataset之Cityscapes:Cityscapes数据集的简介、安装、使用方法之详细攻略_cityscapes dataset-CSDN博客

二、转为COCO格式

1、下载官方脚本地址:GitHub - mcordts/cityscapesScripts: README and scripts for the Cityscapes Dataset

2、cityscapesscripts/helpers/labels.py文件,找到需要的实例分割的类别。注意 hasInstances=Ture 的类别才能够用于实例分割,也就是说只有10类。

3、了解COCO格式

详解COCO数据格式的json文件内容_coco数据集json标注-CSDN博客

4、下面以其中的8类为例:

import cv2
import numpy as np
import os, glob
from shutil import copyfile
import datetime
import json
import os
import re
import fnmatch
from PIL import Image
import numpy as np
import pycococreatortools
 
ROOT_DIR = 'E:/Datesets/cityscapes/cityscapes_val'
IMAGE_DIR = os.path.join(ROOT_DIR, "images")
ANNOTATION_DIR = os.path.join(ROOT_DIR, "gt")
ANNOTATION_SAVE_DIR = os.path.join(ROOT_DIR, "annotations")
INSTANCE_DIR = os.path.join(ROOT_DIR, "instances") 
IMAGE_SAVE_DIR = os.path.join(ROOT_DIR, "val_images")

INFO = {
    "description": "Cityscapes_Instance Dataset",
    "url": "https://github.com/waspinator/pycococreator",
    "version": "0.1.0",
    "year": "2020",
    "contributor": "Kevin_Jia",
    "date_created": "2020-1-23 19:19:19.123456"
}
 
LICENSES = [
    {
        "id": 1,
        "name": "Attribution-NonCommercial-ShareAlike License",
        "url": "http://creativecommons.org/licenses/by-nc-sa/2.0/"
    }
]

CATEGORIES = [
    {
        'id': 1,
        'name': 'person',
        'supercategory': 'cityscapes',
    },
    {
        'id': 2,
        'name': 'rider',
        'supercategory': 'cityscapes',
    },
    {
        'id': 3,
        'name': 'car',
        'supercategory': 'cityscapes',
    },
    {
        'id': 4,
        'name': 'truck',
        'supercategory': 'cityscapes',
    },
    {
        'id': 5,
        'name': 'bus',
        'supercategory': 'cityscapes',
    },
    {
        'id': 6,
        'name': 'train',
        'supercategory': 'cityscapes',
    },
    {
        'id': 7,
        'name': 'motorcycle',
        'supercategory': 'cityscapes',
    },
    {
        'id': 8,
        'name': 'b
<think>好的,我现在需要帮助用户找到适用于YOLOv1进行图像分割数据集。首先,我得回想一下YOLOv1本身的特点。YOLOv1最初是用于目标检测的,它并不直接支持图像分割任务,因为图像分割需要像素级的预测,而YOLOv1的输出是边界框和类别概率。不过,用户可能想尝试将YOLOv1改造用于分割,或者可能混淆了不同版本的YOLO模型。比如YOLOv5和YOLOv8才有官方的分割支持,而用户提到的引用中提到了这些版本的数据集制作方法。 接下来,我需要确认用户的需求。用户明确提到YOLOv1,但引用的资料都是关于YOLOv5、v8分割数据集制作。可能用户对YOLO版本的功能不太清楚,或者希望了解如何适配旧版本。这时候需要解释YOLOv1的局限性,同时提供可能的解决方案,比如使用通用的分割数据集,或者参考新版本的数据集结构进行适配。 然后,数据集推荐方面,通用的图像分割数据集如PASCAL VOC、COCO、Cityscapes等都是常用的。需要检查这些数据集是否适合YOLOv1的结构。由于YOLOv1本身不处理分割,可能需要用户自己调整模型结构,比如添加分割头,这时候数据集需要包含像素级的标注,如COCO的stuff分割或者VOC的分割类别。 另外,用户引用的资料中提到labelme转YOLOv5分割数据集,这可能意味着用户有自定义数据集的需求。可以建议用户使用类似工具生成自己的数据集,并按照YOLO格式调整标签格式,比如将多边形坐标转换为归一化的txt文件,同时注意YOLOv1的输入分辨率和锚框设计可能与后续版本不同,需要相应调整。 还需要注意YOLOv1的输入尺寸是448x448,而后续版本可能不同,这可能影响数据预处理。此外,YOLOv1的网格划分和预测方式与分割任务不同,用户可能需要修改模型架构,这超出了数据集准备的范畴,但可能需要提及。 最后,需要确保回答符合系统指令:使用正确的中文,行内公式用$符号,独立公式用$$,引用正确标注。用户的问题涉及数据集推荐,所以不需要数学公式,但需要结构清晰,分点回答,并生成相关问题。 总结回答结构:先说明YOLOv1的局限性,再推荐通用数据集,接着介绍如何适配数据集结构,可能需要的工具,以及自定义数据集的制作方法。最后生成相关问题,比如YOLOv1的改造方法、数据集格式转换工具、性能优化等。</think>针对YOLOv1进行图像分割任务的需求,需注意YOLOv1原始版本仅支持目标检测,其网络架构未设计分割分支[^3]。但可以通过改造模型结构或适配数据集来实现分割功能。以下是数据集推荐及适配建议: --- ### 一、适用数据集推荐 1. **PASCAL VOC** - 包含20类物体的像素级分割标注,提供$2,913$张训练图片和$2,820$张验证图片 - 标签格式支持XML和PNG掩码,需转换为YOLO格式的TXT文件[^1] 2. **COCO-Stuff** - 扩展自COCO数据集,覆盖172类物体和场景的语义分割标注 - 提供超过$164,000$张图片,适用于复杂场景分割任务[^3] 3. **Cityscapes** - 专注于城市场景,包含$5,000$张精细标注的道路场景图像 - 标注粒度精确到行人、车辆、交通标志等实例分割 --- ### 二、数据集适配方法 1. **标签格式转换** - 将多边形坐标(如Labelme生成)转为YOLO格式: $$ x = \frac{x_{\text{原}}}{W_{\text{图像}}}, \quad y = \frac{y_{\text{原}}}{H_{\text{图像}}} $$ - 需按YOLOv1输入尺寸$448 \times 448$进行归一化 2. **数据预处理流程** ```python # 示例:COCO转YOLOv1格式 from pycocotools.coco import COCO annFile = 'annotations/instances_train2017.json' coco = COCO(annFile) for img_id in coco.getImgIds(): ann_ids = coco.getAnnIds(imgIds=img_id) annotations = coco.loadAnns(ann_ids) # 生成中心点坐标及宽高标注 ``` 3. **自定义数据集工具** - 使用Labelme标注后,通过脚本生成YOLO格式TXT文件(参考引用[1]方法) - 需保证每个TXT文件包含:`类别编号 中心x 中心y 宽度 高度`[^4] --- ### 三、注意事项 1. YOLOv1原生网络需添加分割头(如U-Net结构)才能处理分割任务 2. 输入分辨率应保持$448 \times 448$,避免尺寸不匹配导致的性能下降[^2] 3. 建议参考YOLOv5分割实现(引用[4])进行模型结构改进 ---
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值