文章目录
YOLO目标检测之垃圾检测完整教程:从数据采集到模型部署
前言
在机器学习和计算机视觉领域,目标检测是一项核心技术。YOLO(You Only Look Once)作为一种实时目标检测算法,因其速度快、精度高的特点而广受欢迎。然而,许多初学者在学习YOLO时都会面临一个共同的问题:如何构建自己的数据集?
虽然网络上有许多预构建的数据集可供下载,但在实际项目中,我们往往需要针对特定场景创建自定义数据集。传统的手动标注方式不仅耗时耗力,而且效率极低。本教程将介绍一套完整的自动化流程,从图片采集到模型训练,帮助您快速构建高质量的YOLO数据集。
本教程以垃圾分类为例,涵盖了整个机器学习项目的完整流程。通过学习本教程,您将掌握:
- 自动化图片采集技术
- 基于SAM模型的智能标注方法
- 数据预处理和增强技术
- YOLO模型训练与优化
- 模型测试与部署方案
目录
- 项目概述与技术架构
- 环境配置与依赖安装
- 自动化图片爬取
- 智能分割与标注
- 标注格式转换
- 数据质量控制与同步
- 数据集划分策略</