文章目录
从0到1:RK3588部署YOLOv11并结合OpenCV实现实时推理全流程(保姆级教程)
如果你对在RK3588芯片上跑通YOLOv11目标检测、实现实时视频推理感兴趣,这篇教程就是为你量身打造的。不需要担心技术门槛,我们会一步步带你完成环境搭建、模型转换、部署推理的全流程,最终让你在RK3588上体验AI目标检测的丝滑快感。

一、前置知识与工具准备
在开始之前,我们先明确几个关键概念,再准备好所需工具:
- YOLOv11:当下非常流行的目标检测模型,在速度和精度之间做到了出色平衡,适合边缘设备(如RK3588)部署。
- ONNX:一种跨平台、跨框架的模型格式,是模型从训练框架(如PyTorch)转换到推理框架(如RKNN)的“桥梁”。
- RKNN:瑞芯微针对自家芯片(如RK3588)推出的模型推理框架,能让AI模型在芯片上高效运行。
- OpenCV:强大的计算机视觉库,用于图像读取、预处理、结果可视化等。
工具清单
- PT转
订阅专栏 解锁全文
326

被折叠的 条评论
为什么被折叠?



