文章目录
- 数据集根目录(根据实际情况修改)
- 划分比例
- 创建目标文件夹
- 获取所有图像文件
- 计算各数据集的文件数量
- 复制文件到对应文件夹
- 训练集、验证集、测试集路径
- 类别数量
- 类别名称
-
- 若使用自定义数据集,需修改 “train”“val”“test” 的路径为你划分后的数据集路径,“nc” 为你的类别数量,“names” 为你的类别名称列表(顺序需与标注时的类别顺序一致)。 2. 训练配置:为模型训练设定 “最佳参数” YOLOv11 的训练配置主要通过修改训练命令中的参数或配置文件来实现。合理的训练配置能让模型在有限的训练轮数内达到更好的性能,同时避免出现过拟合、训练速度过慢等问题。 (1)训练命令参数解析 YOLOv11 的训练命令通常基于 “train.py” 脚本(部分版本可能集成在 Ultralytics 库中,可通过 “yolo train” 命令调用),核心参数如下: --data:指定数据集配置文件(YAML 格式)的路径,如 “--data dataset.yaml”。 --model:指定预训练模型的路径或模型配置文件路径。使用预训练模型能加快训练速度并提高模型精度,YOLOv11 提供了不同规模的预训练模型(如 yolov11n.pt、yolov11s.pt、yolov11m.pt 等,n 表示最小模型,性能依次增强),可从 Ultralytics 官网下载。例如,“--model yolov11s.pt”。
- 代码链接与详细流程
RK3588 部署 YOLOv11:从入门到实战的完整指南
一、技术认知:解锁 AI 检测的核心密码
在人工智能落地应用的浪潮中,目标检测技术始终占据着关键地位。它就像为机器装上 “智能双眼”,能够精准识别图像或视频中的各类物体,并实时标注出物体的位置与类别。而在众多目标检测方案中,YOLOv11 与 RK3588 的组合,正成为边缘端智能应用的热门选择。
YOLOv11 作为最新一代 YOLO 系列模型,在保持高精度检测能力的同时,大幅提升了推理速度,无论是日常场景中的行人、车辆识别,还是工业场景下的产品缺陷检测,都能轻松应对。RK3588 则是一款专为边缘计算设计的高性能芯片,集成了强大的 NPU(神经网络处理单元),能为 AI 模型提供充足的算力支持,让本地化的智能检测应用不再受限于云端依赖。
当我们将 YOLOv11 部署到 RK3588 上时,便能实现 “算法 + 硬件” 的完美融合:既拥有先进模型的检测能力,又具备边缘设备的便携性与低延迟优势。这种部署方案可广泛应用于安防监控、智能交通、工业质检、机器人视觉等领域。比如在小区安防中,能实时识别异常闯入人员;在工厂生产线中,可快速检测产品表面的划痕与瑕疵。接下来,我们将一步步拆解从环境搭建到模型落地的全流程,让你轻松掌握这项实用技术。
二、PC 端环境搭建:筑牢技术实践的基础
要顺利开展 YOLOv11 的训练与后续部署,首先需要在 PC 端搭建稳定的开发环境。这一环节看似基础,却直接影响后续操作的效率与成功率,因此每一步都需要细致操
订阅专栏 解锁全文
111

被折叠的 条评论
为什么被折叠?



