基本使用示例
以下是一些基本使用示例,帮助你入门scikit-bio的常见功能:
1. 计算距离矩阵
使用Bray-Curtis距离计算样本之间的距离矩阵:
import numpy as np
from skbio.diversity import beta_diversity
# 示例数据:行为样本,列为特征
data = np.random.rand(5, 10) # 5个样本,10个特征
# 计算Bray-Curtis距离矩阵
distance_matrix = beta_diversity('braycurtis', data)
print(distance_matrix)
2. 进行PCoA分析
基于上面的距离矩阵,进行主坐标分析(PCoA):
from skbio.stats.ordination import pcoa
# 进行PCoA分析
pcoa_results = pcoa(distance_matrix)
# 提取PCoA坐标
print(pcoa_results.samples.head())
# 可视化
import matplotlib.pyplot as plt
plt.scatter(pcoa_results.samples['PC1'], pcoa_results.samples['PC2'])
plt.xlabel('PCoA1')
plt.ylabel('PCoA2')
plt.title('PCoA Result')
plt.show()
3. 计算Alpha多样性
计算香农多样性指数:
from skbio.diversity.alpha import shannon
# 示例数据:每行表示一个样本,每列表示一个物种的丰度
data = np.array([[10, 0, 0, 5], [3, 3, 3, 3], [0, 10, 0, 5]])
# 计算每个样本的香农多样性指数
shannon_indices = [shannon(sample) for sample in data]
print(shannon_indices)
scikit-bio功能概述
序列分析:支持DNA、RNA和蛋白质序列的处理和分析,如序列对比、比对和进化树构建。
多样性分析:提供丰富的alpha和beta多样性指数计算工具。
统计分析:包括多种统计分析和假设检验方法。
数据结构:内置序列、距离矩阵和谱系树等生物数据结构,方便数据处理和分析。