Double Deep Q-Network(DDQN)

Double Deep Q-Network(DDQN)是一种深度强化学习(Deep Reinforcement Learning)框架,是基于 Q-learning 的改进版本,用于解决决策制定者在不确定环境中做出决策的问题。DDQN 结合了两种重要的技术:深度神经网络和双重 Q-learning,以提高 Q-learning 算法的稳定性和性能。

下面是 DDQN 框架的主要要点和解释:

  1. Q-learning 基础: 在强化学习中,Q-learning 是一种用于学习如何在给定状态下选择最优动作的算法。Q 值(Q-function)表示在特定状态下采取特定动作的累积奖励的期望值。传统的 Q-learning 算法使用 Q 值来指导决策制定者选择最佳策略。

  2. 深度神经网络: DDQN 引入了深度神经网络作为函数逼近器,用于估计 Q 值函数。这允许 DDQN 处理具有高维状态空间的问题,并对 Q 值函数进行连续逼近。通常,神经网络的输入是状态,输出是每个可能的动作的 Q 值。

  3. 双重 Q-learning: DDQN 的核心创新在于双重 Q-learning 方法。传统的 Q-learning 算法估计了当前状态下的最佳动作的 Q 值,然后使用这些估计的 Q 值来指导决策。但这可能会导致 Q 值的过度估计(Overestimation)。DDQN 引入了两个神经网络,一个用于选择最佳动作(目标网络),另一个用于估计 Q 值(估算网络)。这两个网络交替地被用来选择和估算 Q 值,以减少 Q 值的过度估计。

  4. 经验回放: 为了提高样本利用率和稳定性,DDQN 通常使用经验回放(Experience Replay)技术。这意味着它会保存之前的经验,然后从中随机采样用于训练,而不是直接使用当前的经验进行更新。这有助于防止神经网络陷入局部最优解,提高学习的稳定性。

  5. 目标网络(Target Network): DDQN 使用两个神经网络,一个用于选择动作,另一个用于估算 Q 值。其中一个网络被称为目标网络,用于估算目标 Q 值,以减少 Q 值的波动性和提高算法的稳定性。目标网络的参数定期更新以与估算网络保持同步。

总之,Double Deep Q-Network(DDQN)框架是一种用于解决强化学习问题的先进方法,它结合了深度神经网络和双重 Q-learning,旨在提高 Q-learning 算法的稳定性和性能。通过使用两个神经网络、经验回放和目标网络,DDQN 能够更有效地处理复杂的状态空间和动作空间,适用于多种决策制定问题,如游戏控制、机器人导航和自动驾驶等。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
DQN算法是一种基于Q-learning的深度强化学习算法,其目标是学习一个Q函数,使得该函数能够最大化累积奖励。DDQN算法是对DQN算法的改进,通过解决DQN算法中过高估计Q值的问题,提高了算法的性能。Dueling DQN算法则是在DDQN算法的基础上,提出了一种新的神经网络结构,使得算法的学习效率更高。 下面是DQN算法的公式推导分析: 1. Q-learning的更新公式为:$Q(s_t,a_t) \leftarrow Q(s_t,a_t) + \alpha(r_{t+1} + \gamma \max_{a} Q(s_{t+1},a) - Q(s_t,a_t))$ 2. DQN算法使用了深度神经网络来逼近Q函数,将更新公式改为:$Q(s_t,a_t) \leftarrow Q(s_t,a_t) + \alpha(r_{t+1} + \gamma \max_{a} Q(s_{t+1},a; \theta^-) - Q(s_t,a_t; \theta))$,其中$\theta$为当前网络的参数,$\theta^-$为目标网络的参数,$\max_{a} Q(s_{t+1},a; \theta^-)$表示在下一个状态$s_{t+1}$中,选择动作$a$所得到的最大Q值。 3. DDQN算法在DQN算法的基础上,使用了双网络结构,解决了DQN算法中过高估计Q值的问题。更新公式为:$Q(s_t,a_t) \leftarrow Q(s_t,a_t) + \alpha(r_{t+1} + \gamma Q(s_{t+1},\arg\max_{a} Q(s_{t+1},a; \theta); \theta^-) - Q(s_t,a_t; \theta))$,其中$\arg\max_{a} Q(s_{t+1},a; \theta)$表示在下一个状态$s_{t+1}$中,选择动作$a$所得到的最大Q值对应的动作。 4. Dueling DQN算法在DDQN算法的基础上,提出了一种新的神经网络结构,使得算法的学习效率更高。具体来说,Dueling DQN算法的输出包括两个分支,分别是该状态的状态价值V(标量)和每个动作的优势值A(与动作空间同维度的向量)。网络结构如下图所示: [Dueling DQN网络结构](https://img-blog.csdn.net/20170727145756345?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvY2hlbnhpYW9fYmFpZHUx/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/q/80) 更新公式为:$Q(s_t,a_t) \leftarrow V(s_t) + (A(s_t,a_t) - \frac{1}{|\mathcal{A}|} \sum_{a} A(s_t,a))$,其中$V(s_t)$表示状态$s_t$的价值,$A(s_t,a_t)$表示在状态$s_t$下选择动作$a_t$的优势值,$\frac{1}{|\mathcal{A}|} \sum_{a} A(s_t,a)$表示所有动作的平均优势值。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值