You Only Look Once: Unified, Real-Time Object Detection
1、简介
目前object detection的工作可以粗略的分为两类:
(1)使用region proposal的,目前是主流,比如RCNN、SPP-Net、Fast-RCNN、Faster-RCNN以及MSRA最近的工作R-FCN。
(2)不使用region proposal的,YOLO,SSD。
2、资源下载
YOLO(You Look Only Once)就是CVPR2016上的文章。
文章地址:https://arxiv.org/abs/1506.02640
YOLO项目主页:https://pjreddie.com/darknet/yolo/
源码地址:https://github.com/pjreddie/darknet
模型下载:http://pjreddie.com/media/files/yolo.weights(已经训练好的模型,可用于测试)
3、demo测试
第1步:将下载好的darknet-master解压缩
unzip darknet-master.zip
第2步:进入darknet-master目录,编译
cd darknet-master
make
第3步:将已经训练好的模型拷贝至darknet-master路径下与编译出来的darknet放在一起
cp yolo.weights darknet-master/
第4步:运行、测试
./darknet detect cfg/yolo.cfg yolo.weights data/dog.jpg
会出现如下所示的运行结果:
layer filters size input output
0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32
1 max 2 x 2 / 2 416 x 416 x 32 -> 208 x 208 x 32
.......
29 conv 425 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 425
30 detection
Loading weights from yolo.weights...Done!
data/dog.jpg: Predicted in 0.016287 seconds.
car: 54%
bicycle: 51%
dog: 56%
目标检车结果如下图:
4、其他参考资料
可参考的网址:
http://www.cnblogs.com/venus024/p/5699633.html