本文章用以JMU AIA(集美大学人工智能协会)于2024/01/27发布在课堂派上的期末考核(FINAL)。
论文来自于期末考核附件。
论文中提到的YOLO项目网站
一、
YOLO(You Only Look Once)不同于传统的目标检测方法,其将目标检测问题视为一个回归问题,直接从输入图像预测空间分离的边界框和相关的类别概率(class probabilities)。整个检测过程由一个单一的神经网络完成,同时预测多个边界框和这些框的类别概率,避免了由复杂管道(complex pipelines)带来的速度缓慢和难以优化的问题。
YOLO使用来自整个图像的特征来预测每个边界框,对整个图像和图像中的所有对象进行全图推理( reasons globally),获取了更为全面的信息,避免了使用滑窗法(sliding window)等方法只获取片面信息所导致的错误识别,在保证了极高的速度的同时保持较高的平均精度。但是它无法看到更大的被检测物体与背景之间的边界信息所以会从背景中检测出错误的物体,因此YOLO的背景检测误差不到Fast R-CNN的一半。
YOLO学习对象的泛化特征( generalizable representations)因此其在训练自然图像和艺术图像上的性能表现远远优越于DPM和R-CNN等方法。这使得其具有高度通用性,有强大的适应性支持其应用于新领域。
YOLO在精度上有缺陷,虽然其识别速度较快,但仍然难以精确定位一些物体,特别的,在定位小物