机器学习强基计划10-1:为什么需要集成学习?核心原理是什么?

本文介绍了集成学习的概念、优势,并详细梳理了加权平均法、投票法和学习法等结合策略,探讨了误差-分歧分解在分析个体学习器性能中的作用,强调集成学习中“好而不同”的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0 写在前面

机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。强基计划实现从理论到实践的全面覆盖,由本人亲自从底层编写、测试与文章配套的各个经典算法,不依赖于现有库,可以大大加深对算法的理解。

🚀详情:机器学习强基计划(附几十种经典模型源码)


1 集成学习概念与优势

集成学习(ensemble learning)并非一种机器学习算法,而是一种通过结合多个学习器来获得比单一学习器显著优越泛化性能的算法框架。集成学习的基本概念整理如下,可以收藏一下~

在这里插入图片描述

集成学习的算法框架如图所示

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.Winter`

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值