机器学习强基计划10-2:详细推导串行集成AdaBoost算法(附Python实现)

本文详细介绍了串行集成学习中的AdaBoost算法,包括原理推导和Python实现。AdaBoost是一种提升弱学习器为强学习器的方法,通过调整样本分布来优化后续基学习器的训练。文章内容涵盖了算法流程、核心代码和可视化结果,旨在深入理解并实践AdaBoost。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0 写在前面

机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。强基计划实现从理论到实践的全面覆盖,由本人亲自从底层编写、测试与文章配套的各个经典算法,不依赖于现有库,可以大大加深对算法的理解。

🚀详情:机器学习强基计划(附几十种经典模型源码)


1 串行集成学习

串行集成学习是一种机器学习的技术,旨在通过将多个基学习器按顺序组合起来,以提高整体学习性能。在串行集成学习中,基学习器按照一定的顺序进行训练和集成,每个基学习器都依赖于前一个学习器的输出。

Boosting是一族将弱学习器提升为强学习器的串行集成算法,这族算法核心原理为:先从初始训练集训练出一个基学习器;再根据基学习器的表现对训练样本分布进行调整,实现不同学习器的

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.Winter`

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值