变分图自编码器

本文介绍了一种使用图卷积网络和变分自编码器的框架,用于图结构数据的无监督学习。模型通过学习潜在表示和节点特征,提升了链接预测任务的性能,适用于图数据分析和无标签学习。
摘要由CSDN通过智能技术生成

论文地址:Kipf T N, Welling M. Variational graph auto-encoders[J]. NIPS, 2016.

代码地址:tkipf/gae: Implementation of Graph Auto-Encoders in TensorFlow (github.com)

pytorch实现:zfjsail/gae-pytorch: Graph Auto-Encoder in PyTorch (github.com)

 Introduction

         本文介绍了一种基于变分自编码器(VAE)的图结构数据无监督学习框架。这个模型利用了潜在变量并且可以学习无向图的可解释潜在表示形式。

        作者通过使用图卷积网络(GCN)作为编码器和内积作为解码器,实现了这一模型。该模型在链接预测等任务上显示了良好的性能,并且能够自然地包含节点特征,从而在多个基准数据集上显著提高预测性能。

Definition

        给定一个无向无权重图g = (V, \epsilon),其中有N=|V|个节点。引入g的邻接矩阵A,及其度矩阵D。又引入了随机潜在变量z_i,总结为一个N×F的矩阵Z。节点特征汇总在N×D的矩阵X。

Inference model

        作者采用了一个由两层 GCN 参数化的简单推理模型:

q(Z|X, A) = \prod _{i=1}^{N} q(z_{i}|X, A)

q(z_{i}|X, A) = N(z_i|\mu_i,diag(\sigma ^{2}_i))

        其中\mu = GCN_\mu(X, A)是均值向量μi的矩阵;同样的还有log \sigma = GCN_\sigma(X,A)。两层GCN定义为GCN(X,A) = \widetilde{A} ReLU( \widetilde{A} XW_0)W_1,Wi为权重矩阵。GCN_\mu(X, A)GCN_\sigma(X,A)共享第一层参数W_0ReLU(\cdot ) = max(0, \cdot)\widetilde{A} = D^{-1/2}AD^{-1/2}是归一化的邻接矩阵。

Generative model

        作者的生成模型由隐藏变量的内积得到。

p(A|Z) = \prod _{i=1}^{n}\prod _{j=1}^{n} p(A_{ij}|z_i,z_j)

p(A_{ij}=1|z_i,z_j)=\sigma(z_i^Tz_j)

        其中A_{ij}是A的元素,\sigma(\cdot)是logistic sigmoid function

Learning

        损失函数:

       L=E_{q(Z|X,A)}[log p(A|Z)]-KL[q(Z|X,A)||p(Z)]

        由两部分组成包括对数似然的期望和KL散度,用于度量模型对数据的拟合程度和潜在表示的正则化。

        这个框架将变分自编码器的原理扩展到图结构数据,使其能够捕捉节点间的复杂关系,并学习能够反映这些关系的潜在表示。通过结合GCN和VAE,VGAE能够在无需标签的情况下,有效地学习图数据的低维表示,对于图结构数据分析和图机器学习任务非常有用。

  • 7
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

在下跳跳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值