多源数据融合算法综述

多源数据融合算法综述

作者:祁友杰、王琦(中国航天科工集团8511研究所)
期刊:航天电子对抗
时间:2017.12.28
引用格式:祁友杰,王琦.多源数据融合算法综述[J].航天电子对抗,2017,33(06):37-41.

摘要: 多源数据融合作为一种特殊的数据处理手段,在目标识别领域得到了较大的重视和发展。在介绍多源数据融合的基本原理和功能模型的基础上,对目前的多源数据融合算法进行了全面介绍,从算法概念出发对其进行了分类,分别为物理模型类、基于参数类和基于认识模型类,并阐述了每类算法的特点以及相关算法的改进,列举了目前国内外一些已经发表的重要算法,为下一步多源融合的目标识别研究提供了一定的理论依据。
关键词: 多源;多传感器;信息融合;数据处理

主要介绍了多传感器数据融合的模型和算法。论文框架图:
在这里插入图片描述

参考文献:
中国学术期刊网络出版总库 共14条
[11]加权决策模板业务感知算法[J]. 杨应雷,周金和,王川潮. 计算机工程与应用. 2017(02)
[1]信息融合理论的基本方法与进展(Ⅱ)[J]. 潘泉,王增福,梁彦,杨峰,刘准钆. 控制理论与应用. 2012(10)
[10]多传感器数据融合目标识别算法综述[J]. 徐小琴. 红外与激光工程. 2006(S4)
[12]决策模板法在决策层融合目标识别中的应用和改进[J]. 张翼,朱玉鹏,付耀文,王宏强,黎湘. 电光与控制. 2005(06)
[5]采用Bayes多传感器数据融合方法进行目标识别[J]. 王俊林,张剑云. 传感器技术. 2005(10)
[20]多传感器目标识别系统的特征优化方法[J]. 牛丽红,倪国强. 光学技术. 2005(03)
[13]基于熵和KNN的决策模板法在目标识别中的应用[J]. 帅军. 湖南文理学院学报(自然科学版). 2005(01)
[16]基于模糊综合函数的目标识别融合算法研究[J]. 杨建勋,史朝辉. 火控雷达技术. 2004(04)
[22]知识系统建模框架研究[J]. 朱欣娟,兰壮丽,刘凤华. 西安工程科技学院学报. 2004(01)
[17]基于Choquet模糊积分的决策层信息融合目标识别[J]. 刘永祥,黎湘,庄钊文. 电子与信息学报. 2003(05)
[19]智能学习的目标识别算法研究[J]. 李君. 红外. 2003(02)
[21]知识系统与认知分析[J]. 张文修,徐宗本. 系统工程理论与实践. 2002(10)
[4]基于矩阵分析的一种不确定性推理的数据融合方法[J]. 张新曼,韩九强. 西安交通大学学报. 2002(08)
[18]多传感器图像模糊融合算法在图像识别中的应用[J]. 刘源,谢维信. 西安电子科技大学学报. 2000(01)

中国博士学位论文全文数据库 共1条
[7]雷达目标融合识别研究[D]. 付耀文.中国人民解放军国防科学技术大学 2003

中国图书全文数据库 共1条
[3]数据融合理论与应用[M]. 西安电子科技大学出版社 , 康耀红著, 1997

外文题录数据库 共5条
[2] Introduction to multisensor data fusion. Hall, David L.,Llinas, James. Proceedings of Tricomm . 1997
[8] Neural networks for sonar andinfrared sensors fusion. Barbera H M,Skarmeta A G,Izquierdo M Z,et al. Information Fusion . 2002
[15] Information fusion of supervised classification in a satellite image.Proc int. Roux L,Desachy J. fuzzy systems . 1995
[9] Fusion techniques for automatic target recognition. Rizvi SA,Nasrabadi NM. Applied Imagery Pattern Recognition Workshop . 2003
[14] Notes on the use of D-S and fuzzy reasoning to fuse identity attribute data. Kewley DJ. . 1992

### 元数据融合技术概述 元数据融合是指通过种传感器或其他数据源获取的数据进行综合处理,以获得更精确的结果。在Python中实现这一过程通常涉及到统计学方法、机器学习算法以及其他特定领域的方法。 对于简单的线性加权平均法可以采用如下公式来计算两个观测值的新均值[^3]: ```python def weighted_average(mean1, var1, mean2, var2): new_mean = (var2 * mean1 + var1 * mean2) / (var1 + var2) return new_mean ``` 当面对更为复杂的情况时,则可能需要用到偏最小二乘回归(PLS),这是一种广泛应用于变量数据分析的技术,在这里给出一个基本的例子说明如何利用`sklearn`库来进行元数据之间的关系建模[^2]: ```python from sklearn.cross_decomposition import PLSRegression import numpy as np # 假设X是自变量矩阵,Y为目标向量 pls = PLSRegression(n_components=2) pls.fit(X_train, y_train) y_pred = pls.predict(X_test) mse = mean_squared_error(y_test, y_pred) print(f'Mean Squared Error: {mse}') ``` 上述代码片段展示了如何基于给定的训练集构建预测模型并评估其性能。需要注意的是实际应用过程中还需要考虑诸如特征预处理、参数调优等问题。 为了提高模型泛化能力,还可以引入交叉验证机制对模型效果进行全面检验[^4]: ```python from sklearn.model_selection import cross_val_score scores = cross_val_score(pls, X, y, cv=5) print("Cross-validation scores:", scores) ``` 这段脚本实现了五折交叉验证,并打印出每次迭代后的得分情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值