机器翻译-注意力机制

一.什么是机器翻译

机器翻译(MT)是一种自动将源语言文本翻译成目标语言的技术。它使用特定的算法和模型,尝试在不同语言之间实现最佳的语义映射。

二.机器翻译设计

2.1读取和预处理数据

2.1.1导入库和定义特殊符号

首先,我们导入所需的库和模块,设置CUDA设备,并打印PyTorch版本和使用的设备。

我们定义了一些特殊符号。其中“<pad>”(padding)符号用来添加在较短序列后,直到每个序列等长,而“<bos>”和“<eos>”符号分别表示序列的开始和结束。

特殊符号的定义是为了标记句子的开始、结束和填充,这对于处理不同长度的句子以及在机器学习模型中标记句子边界非常重要。这些符号在训练过程中帮助模型更好地理解句子结构和上下文

代码如下:

!tar -xf d2lzh_pytorch.tar

# 导入所需的库
import collections
import os
import io
import math
import torch
from torch import nn
import torch.nn.functional as F
import torchtext.vocab as Vocab
import torch.utils.data as Data

# 导入自定义的d2lzh_pytorch模块
import sys
# sys.path.append("..") 
import d2lzh_pytorch as d2l

# 定义特殊符号
PAD, BOS, EOS = '<pad>', '<bos>', '<eos>'

# 设置CUDA设备
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 打印PyTorch版本和使用的设备
print(torch.__version__, device)

2.1.2定义两个特殊函数

接着,我们定义两个辅助函数对后面读取的数据进行预处理:
函数1:process_one_seq函数:
       它的作用是对单个句子进行处理。它首先会把句子中的单词收集起来,将来会用这些单词来创建一个词典。然后,它会在句子的末尾加上一个特殊的结束符号(EOS),并且如果需要的话,还会加上一些填充符号(PAD),使得所有的句子都能达到一样的长度。最后,这个处理过的句子会被加入到一个列表中。这样做的目的是为了确保每个句子的长度都一样,这对于使用神经网络进行翻译训练和预测来说是非常重要的。

代码如下:

# 长度变为max_seq_len,然后将序列保存在all_seqs中
def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
    all_tokens.extend(seq_tokens)
    seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)
    all_seqs.append(seq_tokens)

函数2:build_data函数:

       它的工作是利用所有的单词来创建一个词典,并且把句子中的每个单词转换成数字索引,然后组成一个大的数据阵列(Tensor)。这个词典有点像字典,把每个单词和一个编号对应起来,这样计算机就能理解这些单词了。接着,它会把所有句子里的单词都替换成这些编号,然后把这些编号排列成一个表格形式,方便之后的训练和预测工作。这就好像我们把单词转换成了一种大家都能懂的语言,让机器学习变得简单和统一。

代码如下:

# 使用所有的词来构造词典。并将所有序列中的词变换为词索引后构造Tensor
def build_data(all_tokens, all_seqs):
    vocab = Vocab.Vocab(collections.Counter(all_tokens),
                        specials=[PAD, BOS, EOS])
    indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
    return vocab, torch.tensor(indices)

2.1.3简单演示

       为了演示方便,我们在这里使用一个很小的法语—英语数据集。在这个数据集里,每一行是一对法语句子和它对应的英语句子,中间使用'\t'隔开。在读取数据时,我们在句末附上“<eos>”符号,并可能通过添加“<pad>”符号使每个序列的长度均为max_seq_len。我们为法语词和英语词分别创建词典。法语词的索引和英语词的索引相互独立。

代码如下:

def read_data(max_seq_len):
    # in和out分别是input和output的缩写
    in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], []
    with io.open('fr-en-small.txt') as f:
        lines = f.readlines()
    for line in lines:
        in_seq, out_seq = line.rstrip().split('\t')
        in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ')
        if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1:
            continue  # 如果加上EOS后长于max_seq_len,则忽略掉此样本
        process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len)
        process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len)
    in_vocab, in_data = build_data(in_tokens, in_seqs)
    out_vocab, out_data = build_data(out_tokens, out_seqs)
    return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data)

将序列的最大长度设成7,然后查看读取到的第一个样本。该样本分别包含法语词索引序列和英语词索引序列。

代码如下:

max_seq_len = 7
in_vocab, out_vocab, dataset = read_data(max_seq_len)
dataset[0]

输出结果为:

2.2含注意力机制的 编码器-解码器

在这部分内容中,我们将使用含注意力机制的编码器—解码器来将一段简短的法语翻译成英语。下面我们来介绍模型的实现。

2.2.1编码器

在编码器中,我们将输入语言的词索引通过词嵌入层得到词的表征,然后输入到一个多层门控循环单元中。正如循环神经网络的简洁实现,PyTorch的nn.GRU实例在前向计算后也会分别返回输出和最终时间步的多层隐藏状态。其中的输出指的是最后一层的隐藏层在各个时间步的隐藏状态,并不涉及输出层计算。注意力机制将这些输出作为键项和值项。

代码如下:

class Encoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 drop_prob=0, **kwargs):
        super(Encoder, self).__init__(**kwargs)
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)

    def forward(self, inputs, state):
        # 输入形状是(批量大小, 时间步数)。将输出互换样本维和时间步维
        embedding = self.embedding(inputs.long()).permute(1, 0, 2) # (seq_len, batch, input_size)
        return self.rnn(embedding, state)

    def begin_state(self):
        return None

下面我们来创建一个批量大小为4、时间步数为7的小批量序列输入。设门控循环单元的隐藏层个数为2,隐藏单元个数为16。编码器对该输入执行前向计算后返回的输出形状为(时间步数, 批量大小, 隐藏单元个数)。门控循环单元在最终时间步的多层隐藏状态的形状为(隐藏层个数, 批量大小, 隐藏单元个数)。对于门控循环单元来说,state就是一个元素,即隐藏状态;如果使用长短期记忆,state是一个元组,包含两个元素即隐藏状态和记忆细胞。

代码如下:

encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
output, state = encoder(torch.zeros((4, 7)), encoder.begin_state())
output.shape, state.shape # GRU的state是h, 而LSTM的是一个元组(h, c)

运行结果:

2.2.2注意力机制

在这里我们首先定义一个注意力模型attention_model。注意力模型是一个多层感知机,它接收编码器的隐藏状态和解码器的隐藏状态作为输入,并输出一个标量值,表示当前时间步的注意力权重。

在我们的代码中,注意力模型的输入形状为(批量大小, 2*隐藏单元个数),输出形状为(批量大小, 1)。

注意力模型的作用是:帮助模型在生成输出时关注输入序列的不同部分,从而更好地捕捉到输入序列中的语义信息。

代码如下:

def attention_model(input_size, attention_size):
    model = nn.Sequential(nn.Linear(input_size, attention_size, bias=False),
                          nn.Tanh(),
                          nn.Linear(attention_size, 1, bias=False))
    return model

接着,我们实现注意力机制的向前传播过程。

注意力机制通过一种叫做“背景变量”的的中间产物来实现信息的筛选和传递。、

我们定义了=一个名为attention_forward的函数,它接收三个参数:modelenc_statesdec_state

其中,enc_states表示编码器的所有隐藏状态,形状为(时间步数, 批量大小, 隐藏单元个数);dec_state表示解码器的当前隐藏状态,形状为(批量大小, 隐藏单元个数)。

代码如下:

def attention_forward(model, enc_states, dec_state):
    """
    enc_states: (时间步数, 批量大小, 隐藏单元个数)
    dec_state: (批量大小, 隐藏单元个数)
    """
    # 将解码器隐藏状态广播到和编码器隐藏状态形状相同后进行连结
    dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)
    enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)
    e = model(enc_and_dec_states)  # 形状为(时间步数, 批量大小, 1)
    alpha = F.softmax(e, dim=0)  # 在时间步维度做softmax运算
    return (alpha * enc_states).sum(dim=0)  # 返回背景变量

# attention-forward函数的主要目的是计算注意力权重并返回背景变量。
# 具体步骤如下:
# 1. 将解码器的隐藏状态dec_state广播到与编码器的隐藏状态enc_states相同的形状,然后将它们在第三个维度(隐藏单元维度)上进行连结,得到enc_and_dec_states。
# 2. 将enc_and_dec_states输入到模型model中,得到形状为(时间步数, 批量大小, 1)的能量分数e。
# 3. 对能量分数e在时间步维度上进行softmax运算,得到注意力权重alpha。
# 4. 将注意力权重alpha与编码器的隐藏状态enc_states相乘,然后在时间步维度上求和,得到背景变量。
# 5. 最后,函数返回计算得到的背景变量。

下面,以一个简单的例子训练。

seq_len, batch_size, num_hiddens = 10, 4, 8
model = attention_model(2*num_hiddens, 10) 
enc_states = torch.zeros((seq_len, batch_size, num_hiddens))
dec_state = torch.zeros((batch_size, num_hiddens))
attention_forward(model, enc_states, dec_state).shape

编码器的时间步数为10,批量大小为4,编码器和解码器的隐藏单元个数均为8。注意力机制返回一个小批量的背景向量,每个背景向量的长度等于编码器的隐藏单元个数。因此输出的形状为(4, 8)。结果如下:

2.2.3含注意力机制的解码器

解码器(Decoder)的作用主要是:将编码器的输出转换为目标语言的单词序列。

解码器通过注意力机制计算背景向量,然后将嵌入后的输入和背景向量在特征维连结,接着通过门控循环单元计算出当前时间步的输出与隐藏状态,最后将输出通过全连接层变换为有关各个输出词的预测。同时,解码器的初始隐藏状态直接取自编码器的最终时间步的隐藏状态。

代码如下:

class Decoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 attention_size, drop_prob=0):
        super(Decoder, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.attention = attention_model(2*num_hiddens, attention_size)
        # GRU的输入包含attention输出的c和实际输入, 所以尺寸是 num_hiddens+embed_size
        self.rnn = nn.GRU(num_hiddens + embed_size, num_hiddens, 
                          num_layers, dropout=drop_prob)
        self.out = nn.Linear(num_hiddens, vocab_size)

    def forward(self, cur_input, state, enc_states):
        """
        cur_input shape: (batch, )
        state shape: (num_layers, batch, num_hiddens)
        """
        # 使用注意力机制计算背景向量
        c = attention_forward(self.attention, enc_states, state[-1])
        # 将嵌入后的输入和背景向量在特征维连结, (批量大小, num_hiddens+embed_size)
        input_and_c = torch.cat((self.embedding(cur_input), c), dim=1) 
        # 为输入和背景向量的连结增加时间步维,时间步个数为1
        output, state = self.rnn(input_and_c.unsqueeze(0), state)
        # 移除时间步维,输出形状为(批量大小, 输出词典大小)
        output = self.out(output).squeeze(dim=0)
        return output, state

    def begin_state(self, enc_state):
        # 直接将编码器最终时间步的隐藏状态作为解码器的初始隐藏状态
        return enc_state

2.3训练模型

  1. 我们先实现了计算损失地函数batch_loss:这部分代码实现了一个计算小批量数据损失的函数,其中使用了注意力机制来计算背景向量,并使用掩码变量来避免填充项对损失函数计算的影响。

代码如下:

def batch_loss(encoder, decoder, X, Y, loss):
    batch_size = X.shape[0]
    enc_state = encoder.begin_state()
    enc_outputs, enc_state = encoder(X, enc_state)
    # 初始化解码器的隐藏状态
    dec_state = decoder.begin_state(enc_state)
    # 解码器在最初时间步的输入是BOS
    dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
    # 我们将使用掩码变量mask来忽略掉标签为填充项PAD的损失, 初始全1
    mask, num_not_pad_tokens = torch.ones(batch_size,), 0
    l = torch.tensor([0.0])
    for y in Y.permute(1,0): # Y shape: (batch, seq_len)
        dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
        l = l + (mask * loss(dec_output, y)).sum()
        dec_input = y  # 使用强制教学
        num_not_pad_tokens += mask.sum().item()
        # EOS后面全是PAD. 下面一行保证一旦遇到EOS接下来的循环中mask就一直是0
        mask = mask * (y != out_vocab.stoi[EOS]).float()
    return l / num_not_pad_tokens

在训练函数中,我们需要同时迭代编码器和解码器的模型参数。

代码如下:

def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
    enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
    dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)

    loss = nn.CrossEntropyLoss(reduction='none')
    data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
    for epoch in range(num_epochs):
        l_sum = 0.0
        for X, Y in data_iter:
            enc_optimizer.zero_grad()
            dec_optimizer.zero_grad()
            l = batch_loss(encoder, decoder, X, Y, loss)
            l.backward()
            enc_optimizer.step()
            dec_optimizer.step()
            l_sum += l.item()
        if (epoch + 1) % 10 == 0:
            print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))

接下来,创建模型实例并设置超参数。然后,我们就可以训练模型了。调用训练函数train,开始训练模型,并在每个epoch输出损失值,以便观察模型的训练情况。最终得到的损失值越小,说明模型的性能越好。

代码如下:

embed_size, num_hiddens, num_layers = 64, 64, 2
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 50
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers,
                  drop_prob)
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers,
                  attention_size, drop_prob)
train(encoder, decoder, dataset, lr, batch_size, num_epochs)

结果如下:

2.4预测不定长序列

这里我们实现最简单的贪婪搜索。

代码如下:
 

def translate(encoder, decoder, input_seq, max_seq_len):
    # 将输入序列分割成单词
    in_tokens = input_seq.split(' ')
    # 在末尾添加EOS和PAD符号,使序列长度达到最大长度
    in_tokens += [EOS] + [PAD] * (max_seq_len - len(in_tokens) - 1)
    # 将输入序列转换为张量
    enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]]) # batch=1
    # 使用编码器对输入序列进行编码
    enc_state = encoder.begin_state()
    enc_output, enc_state = encoder(enc_input, enc_state)
    # 初始化解码器的输入和状态
    dec_input = torch.tensor([out_vocab.stoi[BOS]])
    dec_state = decoder.begin_state(enc_state)
    # 初始化输出序列
    output_tokens = []
    # 在每个时间步中生成输出
    for _ in range(max_seq_len):
        dec_output, dec_state = decoder(dec_input, dec_state, enc_output)
        # 选择具有最高概率的输出作为预测
        pred = dec_output.argmax(dim=1)
        pred_token = out_vocab.itos[int(pred.item())]
        if pred_token == EOS:  # 当任一时间步搜索出EOS时,输出序列即完成
            break
        else:
            output_tokens.append(pred_token)
            dec_input = pred
    return output_tokens

简单测试一下模型。输入法语句子“ils regardent.”,翻译后的英语句子应该是“they are watching.”。

input_seq = 'ils regardent .'
translate(encoder, decoder, input_seq, max_seq_len)

结果如下:

2.5评价翻译效果

评价机器翻译结果通常使用BLEU(Bilingual Evaluation Understudy)[1]。对于模型预测序列中任意的子序列,BLEU考察这个子序列是否出现在标签序列中。

具体来说,设词数为𝑛𝑛的子序列的精度为𝑝𝑛𝑝𝑛。它是预测序列与标签序列匹配词数为𝑛𝑛的子序列的数量与预测序列中词数为𝑛𝑛的子序列的数量之比。举个例子,假设标签序列为𝐴𝐴、𝐵𝐵、𝐶𝐶、𝐷𝐷、𝐸𝐸、𝐹𝐹,预测序列为𝐴𝐴、𝐵𝐵、𝐵𝐵、𝐶𝐶、𝐷𝐷,那么𝑝1=4/5,𝑝2=3/4,𝑝3=1/3,𝑝4=0𝑝1=4/5,𝑝2=3/4,𝑝3=1/3,𝑝4=0。设𝑙𝑒𝑛label𝑙𝑒𝑛label和𝑙𝑒𝑛pred𝑙𝑒𝑛pred分别为标签序列和预测序列的词数,那么,BLEU的定义为:

其中𝑘𝑘是我们希望匹配的子序列的最大词数。可以看到当预测序列和标签序列完全一致时,BLEU为1。

因为匹配较长子序列比匹配较短子序列更难,BLEU对匹配较长子序列的精度赋予了更大权重。例如,当𝑝𝑛𝑝𝑛固定在0.5时,随着𝑛𝑛的增大,0.51/2≈0.7,0.51/4≈0.84,0.51/8≈0.92,0.51/16≈0.960.51/2≈0.7,0.51/4≈0.84,0.51/8≈0.92,0.51/16≈0.96。另外,模型预测较短序列往往会得到较高𝑝𝑛𝑝𝑛值。因此,上式中连乘项前面的系数是为了惩罚较短的输出而设的。举个例子,当𝑘=2𝑘=2时,假设标签序列为𝐴𝐴、𝐵𝐵、𝐶𝐶、𝐷𝐷、𝐸𝐸、𝐹𝐹,而预测序列为𝐴𝐴、𝐵𝐵。虽然𝑝1=𝑝2=1𝑝1=𝑝2=1,但惩罚系数exp(1−6/2)≈0.14exp⁡(1−6/2)≈0.14,因此BLEU也接近0.14。

下面来实现BLEU的计算。

代码如下:

def bleu(pred_tokens, label_tokens, k):
    len_pred, len_label = len(pred_tokens), len(label_tokens)
    score = math.exp(min(0, 1 - len_label / len_pred))
    for n in range(1, k + 1):
        num_matches, label_subs = 0, collections.defaultdict(int)
        for i in range(len_label - n + 1):
            label_subs[''.join(label_tokens[i: i + n])] += 1
        for i in range(len_pred - n + 1):
            if label_subs[''.join(pred_tokens[i: i + n])] > 0:
                num_matches += 1
                label_subs[''.join(pred_tokens[i: i + n])] -= 1
        score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
    return score

为了方便查看结果,定义一个辅助打印函数。预测正确则分数为1。

def score(input_seq, label_seq, k):
    pred_tokens = translate(encoder, decoder, input_seq, max_seq_len)
    label_tokens = label_seq.split(' ')
    print('bleu %.3f, predict: %s' % (bleu(pred_tokens, label_tokens, k),
                                      ' '.join(pred_tokens)))

结果如下:

至此结束。

  • 27
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
L-注意力机制是一种结合了长短期记忆网络(LSTM)和注意力机制的神经网络模型。引用和中提到了一些基于LSTM和注意力机制的时间序列预测的实现源码和数据。 LSTM是一种递归神经网络,被广泛应用于序列数据的建模和预测。它通过门控单元的设计,能够有效地捕捉序列中的长期依赖关系。而注意力机制则是一种机制,可以使模型自动地关注输入序列中的重要部分。它通过给予不同输入部分不同的权重,使模型能够更加集中地处理关键信息。 LSTM-注意力机制结合了LSTM和注意力机制的优点,能够在处理时间序列数据时更好地捕捉序列中的重要信息,提高预测准确性。这种模型在诸如文本翻译、语音识别和股票预测等任务中得到了广泛的应用。 引用中提到了神经机器翻译(NMT)作为LSTM-注意力机制的一个应用示例。在NMT中,LSTM-注意力机制被用来将源语言句子映射成一个固定长度的向量表示,并基于该向量生成目标语言的翻译。通过引入注意力机制,NMT能够更好地处理长句子和复杂语言结构,提高翻译质量。 最后,引用中提到了注意力机制是深度学习的最新趋势之一。注意力机制的引入使得神经网络能够更加灵活地处理输入序列中的不同部分,提高了模型的表现和效果。 综上所述,LSTM-注意力机制是一种结合了长短期记忆网络和注意力机制的神经网络模型,用于处理时间序列数据和任务,如文本翻译、语音识别和股票预测等。它能够更好地捕捉序列中的重要信息,提高预测准确性,并在深度学习领域具有广泛的应用前景。<span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值