【代码】Option-Critic框架学习记录

代码:option-critic-arch-master

准备工作 

打开代码option-critic-arch-master后发现有后缀为.ipynb的文件,经过查询发现是使用 Jupyter Notebook 来编写Python程序时的文件,所以用anaconda中的Jupyter Notebook打开查看。在jupyter下的File—>Download as —>python (.py)可以将.ipynb转化为.py文件。

一、实验环境介绍:fourrooms

环境是经典的四个迷宫房间,每个房间之间通过一个过道连接,假设智能体当前处于左上方的房间内,其目标是到达G1处。

  二、代码分析

the main loop for training
# History of steps and average durations
history = np.zeros((nruns, nepisodes, 2))

option_terminations_list = []

for run in range(nruns):定义训练次数
    
    env = FourRooms()环境初始化 
    
    nstates = env.observation_space.shape[0]
    nactions = env.action_space.shape[0]
    
    # Following three belong to the Actor模块初始化定义
    
    # 1. The intra-option policies - linear softmax functions策略函数,SoftmaxPolicy类更新Q_U价值表
    option_policies = [SoftmaxPolicy(rng, lr_intra, nstates, nactions, temperature) for _ in range(noptions)]
    
    # 2. The termination function - linear sigmoid function终止函数,SigmoidTermination类,更新是优势函数(控制更新幅度、速度和方向)和幅度。
    option_terminations = [SigmoidTermination(rng, lr_term, nstates) for _ in range(noptions)]
    
    # 3. The epsilon-greedy policy over options价值表更新由critic完成,所以EpsGreedyPolicy类里没有更新函数
    policy_over_options = EpsGreedyPolicy(rng, nstates, noptions, epsilon)
    
    # Critic内含顶层策略的Q值表更新,时间差分
    critic = Critic(lr_critic, discount, policy_over_options.Q_Omega_table, nstates, noptions, nactions)
    
    print('Goal: ', env.goal)
    
    for episode in range(nepisodes):
        
        # Change goal location after 1000 episodes 每一千步更新一次目标
        # Comment it for not doing transfer experiments
        if episode == 1000:
            env.goal = rng.choice(possible_next_goals)
            print('New goal: ', env.goal)
        
        state = env.reset()
        
        option = policy_over_options.sample(state)
        action = option_policies[option].sample(state)
        
        critic.cache(state, option, action)
        
        duration = 1
        option_switches = 0
        avg_duration = 0.0
        
        for step in range(nsteps):
            
            state, reward, done, _ = env.step(action)
            
            # Termination might occur upon entering new state判断当前是否需要终止
            if option_terminations[option].sample(state):
                option = policy_over_options.sample(state)
                option_switches += 1
                avg_duration += (1.0/option_switches)*(duration - avg_duration)
                duration = 1
                
            action = option_policies[option].sample(state)
            
            # Critic update
            critic.update_Qs(state, option, action, reward, done, option_terminations)
            
            # Intra-option policy update with baseline
            Q_U = critic.Q_U(state, option, action)
            Q_U = Q_U - critic.Q_Omega(state, option)
            option_policies[option].update(state, action, Q_U)
            
            # Termination condition update优势函数的更新,用Q_Omega表格进行维护
            option_terminations[option].update(state, critic.A_Omega(state, option))
            
            duration += 1
            
            if done:
                break
                
        history[run, episode, 0] = step
        history[run, episode, 1] = avg_duration
        
    option_terminations_list.append(option_terminations)
    
    # Plot stuff
    clear_output(True)
    plt.figure(figsize=(20,6))
    plt.subplot(121)
    plt.title('run: %s' % run)
    plt.xlabel('episodes')
    plt.ylabel('steps')
    plt.plot(np.mean(history[:run+1,:,0], axis=0))
    plt.grid(True)
    plt.subplot(122)
    plt.title('run: %s' % run)
    plt.xlabel('episodes')
    plt.ylabel('avg. option duration')
    plt.plot(np.mean(history[:run+1,:,1], axis=0))
    plt.grid(True)
    plt.show()
存在问题的代码?

我认为下面这部分代码存在问题:

for step in range(nsteps):
            
            state, reward, done, _ = env.step(action)
            
            # Termination might occur upon entering new state
            if option_terminations[option].sample(state):
                option = policy_over_options.sample(state)
                option_switches += 1
                avg_duration += (1.0/option_switches)*(duration - avg_duration)
                duration = 1
                
            action = option_policies[option].sample(state)
            
            # Critic update
            critic.update_Qs(state, option, action, reward, done, option_terminations)

当前的action与环境进行一次交互,拿到state, reward, done,state相对于此时的action有关算是‘next_state’,用‘next_state’再去拿到一次动作。

所以critic update中的state、option、action、reward、done不是在一次交互中所得到的。option还是那个option,reward和done是上一次action交互得到的。

要想解决这个问题,就得把state, reward, done, _ = env.step(action)移到拿到action后面,然后新生成的state用‘next_state’命名,传到critic update时用的是state,在下一次进到step函数时,再将state赋值next_state。这样就可以保证state、option、action、reward、done是在一次交互中所得到的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: ppo(proximal policy optimization)是一种用于强化学习的策略优化算法,其基本思想是在策略更新函数的优化过程中,使用了一些新的技巧来提高学习效率和稳定性。 actor-critic是一种深度强化学习算法,其中actor和critic分别负责学习决策策略和估计价值函数。actor-critic算法通过训练actor和critic模型来实现策略优化。 pp actor-critic算法结合了ppo和actor-critic的两种算法,是一种新的策略优化算法。它通过使用ppo算法对策略进行优化,并使用actor-critic算法来学习和估计策略价值。在这种模型中,actor负责生成动作,critic负责评估策略价值,pp算法保证了策略更新的稳定性和效率。 pp actor-critic算法具有许多优点,例如可以有效地解决强化学习中出现的稀疏奖励和高维空间问题,能够在没有先验知识的情况下自动学习和适应。不过,它的训练过程比较复杂,需要选择合适的超参数,并且需要较长的训练时间来获得最佳效果。 尽管存在一些挑战,但pp actor-critic算法仍被广泛应用于各种强化学习任务,例如游戏、机器人控制等。它的发展也为解决实际应用中的问题提供了新的思路和方法。 ### 回答2: PPO Actor-Critic是深度强化学习领域中的一个算法。它是基于Actor-Critic方法的一种改进。Actor-Critic算法将决策策略和价值函数相结合,以达到更准确的评估和更新。而PPO算法则是为了解决常规Policy Gradient算法的训练不稳定性而提出的一种策略优化算法。 PPO Actor-Critic算法的核心思想是通过对策略的更新,不断改善训练的效果。该算法是由Proximal Policy Optimization(PPO)算法和Actor-Critic算法结合而成。在训练过程中,PPO Actor-Critic会利用现有的经验,通过Actor-Critic算法更新策略和价值函数。其更新策略的过程中,会采用PPO算法进行优化,从而能够根据实际情况平衡策略更新和训练效果。 PPO Actor-Critic算法的优点是能够同时利用线性和非线性的函数逼近器来最小化优势函数的误差。从而避免了传统策略梯度算法的过拟合问题,大大增强了该算法的鲁棒性。此外,PPO Actor-Critic也能够避免过多的数据采样和重复推断,大大提升了算法的效率。 综上所述,PPO Actor-Critic是一种结合了PPO算法和Actor-Critic算法的强化学习算法,可用于训练智能代理以达到更精确的评估和更新。 ### 回答3: PPO Actor-Critic 是指一种深度强化学习算法。在这种算法中,通过两个模型一起工作来提高决策过程的效率。 其中,Actor 模型用于执行动作。它使用一系列状态来计算每个可能的策略,并选择相应的行动方案。这个过程被看作是一个正则化的过程。这意味着在执行过程中,Actor 模型不断从环境中获取反馈信息,并根据这些反馈信息进行优化。 相反,Critic 模型则用于评估 Actor 模型的表现。它通过测量实际的奖励和预测的奖励之间的差距来判断 Actor 模型是否做决策。如果结果不好,则系统会通过重新计算 Actor 模型的策略来提出新的决策方案。 PPO Actor-Critic 算法通过优化 Actor 模型的过程来提高决策的效率。这通常会导致更好的策略和更好的结果。此外,由于 Critic 模型的存在,系统可以更好地理解和评估策略的表现。这使得 PPO Actor-Critic 算法成为适用于机器人控制、游戏策略和金融交易等领域的一种流行算法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值