Graph Wavelet Neural Network

论文标题

Graph Wavelet Neural Network

论文来源

ICLR 2019, 论文PDF

论文代码

https://github.com/benedekrozemberczki/GraphWaveletNeuralNetwork

1 背景梳理

对于自然界中广泛存在的非欧式拓普数据,即图(Graph),的研究得到了广泛关注,为了有效提取图的特征表达,图神经网络(GNN)等一类优秀的模型被提出,并适用于广泛的应用场景,如社交网络、推荐系统、智慧医疗以及城市规划。谱域卷积网络(SpectralCNN)是图神经网络中的一个典型模型,基于图信号的傅里叶变化,对图信号进行滤波和特征提取。然而 SpectralCNN 存在若干问题,包括:


i SpectralCNN 的建模必须基于图拉普拉斯矩阵的特征值分解,然而该运算的时间复杂度是巨大的,降低了该模型的效率和实用性。
ii SpectralCNN 中的傅里叶基向量是稠密的,在大规模图运算中无法通过稀疏矩阵的进行加速,降低了该模型的效率。
iii SpectralCNN 中的傅里叶基向量倾向于表示全局性的信号,不够突出局部化特征,难以得到更清晰有效的表达,降低了该模型的学习效果。


为了解决上述问题,本文提出一种基于小波基的图神经网络,成为图小波神经网络(Graph Wavelet Neural Network, GWNN)。【通过把 SpectralCNN 中的傅里叶基转化为小波基,并设计一个高效的特征提取方法】,GWNN可以有效地学习局部化的、稀疏的特征表达,同时提升网络的表达效果和运算效率。

2 论文贡献

1)算法思想

采用小波基向量来替代原始 SpectralCNN 中的傅里叶基,从而基于图信号的小波变换进行模式分析和特征提取。基于小波基GWNN的优势表现在,稀疏高效和特征清晰。

2)网络设计

提出一种创新的图小波神经网络(Graph Wavelet Neural Network, GWNN),采用双层网络结构,每层结构均采用基于小波变换的图信号分析。另外,原理性的GWNN仍具备较大的参数量,从而容易导致巨大的计算开销和guo’ni’h以及设计了一种高效的算法,将特征提取和图卷积进行解耦,提升运算效率。

3)实验效果

在 Cora, Citeseer 和 Pubmed 三个数据集上进行了半监督节点分类任务,经测试,GWNN 均超过一系列优秀的前人工作。对小波基和特征提取进行了细节分析,观测到他们具有充分的稀疏性,验证了本文假设。

3 方法

给定一个含有 N N N个节点的图结构以及相应的图信号 G ( V , E , X ) G(\mathcal{V},\mathcal{E},\mathbf{X}) G(V,E,X),其中, X ∈ R N × 1 \mathbf{X}\in\mathbb{R}^{N \times 1} XRN×1 表示该图结构上的一个图信号向量。图拉普拉斯矩阵(Graph Laplacian)度量了图结构的变化和不平滑程度,可以定义为 L = D − A ∈ R N × N \mathbf{L}=\mathbf{D}-\mathbf{A}\in\mathbb{R}^{N \times N} L=DARN×N,其中 A \mathbf{A} A表示图的邻接矩阵, D \mathbf{D} D为度矩阵。 L \mathbf{L} L有一个常用的归一化形式: L = I − D − 1 / 2 A D − 1 / 2 \mathcal{L}=\mathbf{I}-\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2} L=ID1/2AD1/2。通过对图拉普拉斯矩阵的特征分解,我们可以得到适用于该图结构的傅里叶基向量及其对应的频谱成分,即,
KaTeX parse error: Undefined control sequence: \bbox at position 2: \̲b̲b̲o̲x̲[white, 3px] \m…
其中 U ∈ R N × N \mathbf{U}\in\mathbb{R}^{N \times N} URN×N 表示由傅里叶基向量构成的基矩阵,表示了该图结构所蕴含频谱成分; Λ ∈ R N × N \mathbf{\Lambda}\in\mathbb{R}^{N \times N} ΛRN×N 表示特征值矩阵,越大特征值对应的傅里叶基表示频率越高的成分。

对于该图结构上的一个图信号 X ∈ R N × 1 \mathbf{X}\in\mathbb{R}^{N \times 1} XRN×1,该信号的图傅里叶变换可以表示为 X ^ = U ⊤ X \hat{\mathbf{X}} = \mathbf{U}^{\top}\mathbf{X} X^=UX;相应的,图傅里叶反变换为 X = U X ^ {\mathbf{X}} = \mathbf{U}\hat{\mathbf{X}} X=UX^。因此,基于图傅里叶变换的图卷积被定义为
KaTeX parse error: Undefined control sequence: \bbox at position 2: \̲b̲b̲o̲x̲[white, 3px] \m…
U ⊤ Y \mathbf{U}^{\top}\mathbf{Y} UY 建模为可学习的参数 g θ g_{\theta} gθ,则谱域卷积网络 SpectralCNN 被建立。

上文提及,图结构的傅里叶基有诸多问题,本文提出用小波基来代替图卷积中的傅里叶基。原理上,小波基可以表达为
ψ s = U G s U ⊤ , \psi_s = \mathbf{U}\mathbf{G}_s\mathbf{U}^{\top}, ψs=UGsU,
其中 G s = diag ( e s λ 1 , … , e s λ N ) \mathbf{G}_s = \textrm{diag}(e^{s\lambda_1}, \dots, e^{s\lambda_N}) Gs=diag(esλ1,,esλN), s s s是一个尺度系数,描述了小波基信号的不同尺度。小波基比传统的傅里叶基具有更高的稀疏性和局部性。小波基可以由 Chebyshev 多项式近似表示从而高效的获得。给定小波基,图卷积运算可以被表达为
KaTeX parse error: Undefined control sequence: \bbox at position 2: \̲b̲b̲o̲x̲[white, 3px] \m…
进一步,假设输入一个p维图信号 X ∈ R N × p \mathbf{X}\in\mathbb{R}^{N \times p} XRN×p,为了得到一个q维图信号 Y ∈ R N × q \mathbf{Y}\in\mathbb{R}^{N \times q} YRN×q 基于小波基的可训练的图卷积被定义为,
KaTeX parse error: Undefined control sequence: \bbox at position 2: \̲b̲b̲o̲x̲[white, 3px] \m…
其中 F i , j \mathbf{F}_{i,j} Fi,j 是一个对角矩阵,对角线上每个元素表示一个可训练的网络参数, h ( ⋅ ) h(\cdot) h() 表示非线性的激活函数,可以采用 ReLU 或 softmax 函数。值得注意的是,上述表达式所需要的参数量为 O ( N × p × q ) \mathcal{O}(N \times p \times q) O(N×p×q),他针对每个节点的每个输入输出维度均分配独立的参数,造成了巨大的计算开销和过拟合风险。为了降低上述隐患,本文提出一种高效的计算方法,即将基于小波基的图卷积解耦为特征变换和图卷积两个步骤,分别表示为
KaTeX parse error: Undefined control sequence: \bbox at position 2: \̲b̲b̲o̲x̲[white, 3px] \m…
其中, W ∈ R p × q \mathbf{W}\in\mathbb{R}^{p \times q} WRp×q表示一个可训练的参数矩阵,该矩阵对每个节点是共享的。由此网络的参数量由 O ( N × p × q ) \mathcal{O}(N \times p \times q) O(N×p×q)下降为 O ( N + p × q ) \mathcal{O}(N + p \times q) O(N+p×q)

4 实验

为了验证GWNN的表达能力、稀疏性和运算效率,本文在三个数据集:Cora、Citeseer 和 Pubmed 上执行了半监督节点分类任务。三个数据集的相关信息如Table 1所示。

为了验证本文提出的特征变换-图卷积解耦方法的高效性,作者发现在现有设备上无法承载GWNN的原始版图卷积运算,于是就在 ChebyNet 上进行了实验,并测试了采用解耦方法或不解耦方法的网络表达能力和参数量,结果如Table 2所示。可以看出,通过解耦算法可以大幅降低网络参数,并一定程度上提升了节点分类的准确率,降低了过拟合。

接下来是将GWNN与state-of-the-art方法进行对比,在三个数据集上的半监督节点分类结果再Table 3中被展示,可以看出,GWNN可以超过大量的传统图信号处理方法和新兴的多种图神经网络方法。

最后,本文验证了 GWNN 的稀疏性。首先,将小波基和傅里叶基中不为0的元素进行了统计,可以发现小波基中不为0的元素数目和在整个基向量中的占比远低于傅里叶基。接着,验证了小波变换后的图信号和傅里叶变换后的图信号的稀疏情况,可以得到类似的结论。充分证明了GWNN的稀疏性以及可以进行大规模图信号处理的潜在效率。

5 总结

本文提出一种创新的图小波神经网络GWNN,采用小波基替代传统的傅里叶基,对图信号进行变换和特征提取。为了提升网络的运算效率,还在网络中提出一种 特征变换-图卷积解耦操作,可以大幅提升运算效率并降低过拟合隐患。在半监督节点分类任务上进行了实验,充分验证了GWNN的表达效果、运算效率和稀疏性。

参考文献

[1] J. Bruna et al. Spectral networks and locally connected networks on graphs. ICLR 2014.
[2] M. Defferrard et al. Convolutional neural networks on graphs with fast localized spectral filtering. NeurIPS 2016.
[3] B. Xu et al. Graph wavelet neural network. ICLR 2019
[4] D. Hammond et al. Wavelets on graphs via spectral graph theory. App. Comp. Harmo. Analysis, 30 (2). 2011

  • 1
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 神经网络 (Graph Neural Network) 是一种特殊的深度学习模型,专门用于处理结构数据。它能够学习中节点之间的关系,并用于预测、分类和聚类等任务。神经网络通常由多层节点卷积和卷积层组成。 ### 回答2: 神经网络Graph Neural Network,GNN)是一种能够对数据进行分类、预测和嵌入学习的机器学习模型。数据包括节点、边和孤立的子,将它们组成一个网络结构,每个节点和边都带有相应的特征信息。 与传统的人工神经网络不同,神经网络的输入不仅仅是简单的向量,而是形结构本身。通过对节点和边进行信息传递和聚合,GNN能够对整个进行全局性的推断和预测。常见的GNN模型有Graph Convolutional Networks(GCN)、Graph Attention Networks(GAT)、GraphSAGE等。 GNN具有以下特点: 1. 局部性:GNN通过每个节点的邻居信息消除了数据中的局部性质,实现了节点之间的信息传递和聚合,能够快速学习到具有相似特征的节点之间的关系。 2. 结构性:GNN能够充分利用中的结构信息,包括节点的邻居信息、度数分布等,实现了对数据的有效利用。 3. 可扩展性:GNN可以处理大规模的数据,对于具有高维特征的节点和边,也能够进行有效的特征提取和计算。 由于GNN能够有效地处理高维、复杂的数据,近年来被广泛应用于社交网络分析、化学分子编码、语言模型等领域。尤其在社交关系分析、推荐系统等领域,GNN已经成为一种非常流行的机器学习模型。 ### 回答3: 神经网络是一种针对非欧几里德结构数据建模和推理的神经网络框架。传统的神经网络只能有效处理欧几里德结构数据,而对于更具复杂性质的非欧几里德结构数据如网络、句法树等则存在不足。神经网络的主要目标是捕捉上的结构信息和节点之间的关系,以便更好地推理和预测上的节点属性、边属性和全局属性。 神经网络可以由三个部分组成:节点表示、边表示、以及聚合函数。节点表示可以使用传统的基于节点的特征,例如离散特征、连续特征、形特征。边表示通常是通过将节点特征组合来获得的边表征。聚合函数是在每个节点处执行的算法,这使得网络可以聚合邻居节点,从而输出每个节点的嵌入表示。 有多种类型的神经网络,其中最常见的是卷积神经网络(GCN)和注意力网络(GAT)。GCN使用卷积操作聚合节点邻居,然后通过多层GCN堆叠来输出节点嵌入。而GAT使用注意力机制对节点和边进行加权,得到相应的嵌入表示。另外,还有GraphSAGE、Graph Convolutional Policy Network (GCPP)等多种神经网络模型,其适用范围和性能各异。 总体而言,神经网络是一种新颖的深度学习模型,可用于处理非欧几里德结构数据。它们已在像分类、推荐系统、社交网络和分子化学等领域中取得了成功,并且在未来的研究中有很大的潜力。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值