有序二维数组查找的两种方法:从左上角(递归)和右上角(非递归)出发

有序二维数组查找

这道题是在学习剑指offer这本书看到的,原题如下所示:
  在一个二维数组中,每行都按照从左到右递增的顺序排序,每列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。

分块治之

在拿到题目的时候,我并没有找到右上角那么优秀的特征,所以我选择二分查找的有序数组的思想,最初的想法是从最小值(左上角)到最大值(右下角)进行扇形搜索。
在这里插入图片描述
例如上边的这个数组,但是发现该数组并不具备这样的条件,因为扇形搜索的话,同半径下的元素,例如9,9,7,6这四个元素并不相等,但是发现一个有趣的规律,假如我沿着该矩阵左上角最大最小值这样的对角线,针对7这个元素进行搜索,搜索到绿色区域10这个元素时,绿色部分均大于等于10,进而大于7,而黄色部分均小于7,这样便可以将黄,绿两个区域进行排除,只搜索蓝色区域即可,同时针对蓝色区域同样执行一样的搜索模式,这样的话便可以分块递归处理了。同时为了处理不对称情况作出了以下处理:

  1. 只针对矩阵中从左上角出发最大的正形矩阵进行搜索,剩下的矩阵(粉红区域)下一步搜索
  2. 对于当前搜索矩阵,当在对角线搜索到目标值时,返回当前搜索区域已搜索到目标值
  3. 当前搜索矩阵左上角第一个元素大于目标值时,返回当前搜索区域无目标值
  4. 当前搜索矩阵右下角第一个元素小于目标值时,返回当前搜索区域无目标值
  5. 当前搜索矩阵对角线中部存在大于目标值元素时,搜索进一步该元素的蓝色区域

学过数据结构与算法的同学一样就可以看出这个算法的弊端,当这个二维数组退化为一维数组时,本算法的时间复杂度也会退化成 O ( n ) O(n) O(n)。不过作为脑海中的第一种实现方法,我还是打算把它记录下来。代码如下 :

template <typename item>
bool _FindInPartiallySortedMatrixTopLeft(item *array, item value, int startx, int starty, int endx, int endy,
                                         int column) {
    assert(startx <= endx && starty <= endy);
    int currentrow = endx - startx;
    int currentcolumn = endy - starty;
    int count = currentrow < currentcolumn ? currentrow : currentcolumn;
//            std::cout << startx << "," \
//                     << starty << "-->"\
//                     << endx << ","\
//                     << endy << "\n";
    item currentItem = 0;
    int currentX = startx;
    int currentY = starty;
    for (int i = 0; i <= count; ++i, ++currentX, ++currentY) {
        currentItem = array[currentX * column + currentY];
        if (currentItem == value) {
            return true;
        } else if (currentItem > value) {
            if (i == 0) return false;
            else {
                if (_FindInPartiallySortedMatrixTopLeft(array, value, currentX, starty, endx, currentY - 1,
                                                        column))  return true;
                return _FindInPartiallySortedMatrixTopLeft(array, value, startx, currentY, currentX - 1, endy,
                                                           column);
            }
        }
    }
    currentX --;
    currentY --;
    if (currentrow > currentcolumn) {
        if (currentX == endx) return false;
        else
            return _FindInPartiallySortedMatrixTopLeft(array, value, currentX + 1, starty, endx, endy, column);
    } else {
        if (currentY == endy) return false;
        else
            return _FindInPartiallySortedMatrixTopLeft(array, value, startx, currentY + 1, endx, endy, column);
    }
}

template <typename item>
bool FindInPartiallySortedMatrixTopLeft(item *array, item value, int row, int column){
    return _FindInPartiallySortedMatrixTopLeft(array, value, 0, 0, row - 1, column - 1, column);
}

剑指offer解法

当然从右上角搜索是更为优化的一种算法了,因为这个算法是利用单列最小这个特性所以跟矩阵形状无关,如下图所示,直接从右上角对该矩阵进行搜索,当右上角元素大于目标元素时,直接排除其所在这一列(绿色区域),当右上角元素小于目标元素,直接排除这一行(蓝色区域),这样的话每一步搜索都可以对一行(列)进行排除,搜索效率较高。
在这里插入图片描述

template <typename item>
bool FindInPartiallySortedMatrixTopRight(item *matrix, item number, int rows, int columns)
{
    bool found = false;

    if(matrix != nullptr && rows > 0 && columns > 0)
    {
        int row = 0;
        int column = columns - 1;
        while(row < rows && column >=0)
        {
//                    std::cout << row << "," \
//                     << column << "-->"\
//                     << rows-1 << ","\
//                     << 0 << "\n";
            if(matrix[row * columns + column] == number)
            {
                found = true;
                break;
            }
            else if(matrix[row * columns + column] > number)
                -- column;
            else
                ++ row;
        }
    }

    return found;
}

编写的自动化测试代码如下:

template <typename T>
void test_find_sorted_matrix(const std::string &findName, bool (*find)(T *, T, int, int), T *array, int value,
                             int rows, int columns, bool expect, int count = 10000000) {
    clock_t startTime, endTime;
    startTime = clock();
    for (int i = 0; i < count; ++i) {
        assert(find(array, value, rows, columns)==expect);
    }
    endTime = clock();
    std::cout<<findName << " : "<<(double)(endTime-startTime)/CLOCKS_PER_SEC<<" s."<<std::endl;
}

void test_all_find_sorted_matrix(int n,int m,int count = 1){
	assert(n < 21 && m < 21);
	int array[n][m];
	for (int k = 0; k < m; ++k) {
	   array[0][k] = k;
	}
	for (int i = 1; i < n; ++i) {
	   for (int j = 0; j < m; ++j) {
	       array[i][j] = array[i-1][j] + array[i-1][m-1];
	   }
	}
	
	for (int i = 0; i < n; ++i) {
	   for (int j = 0; j < m; ++j) {
	       std::cout << array[i][j] << "\t";
	   }
	   std::cout << "\n";
	}
	int value = array[rand()%n][rand()%m];
	test_find_sorted_matrix("Find Top Right Corner", flame::CodingInterviewChinese::FindInPartiallySortedMatrixTopRight<int>, (int *) array,
	                       value, n, m,true, count);
	test_find_sorted_matrix("Find Top Left Corner", flame::CodingInterviewChinese::FindInPartiallySortedMatrixTopLeft<int>, (int *) array,
	                       value, n, m, true,count);
	}
}

性能测试

经测试从左上角搜索,只针对对角线元素性能较优(2-3倍),从右上角搜索整体较优(2-3倍),感兴趣的朋友可以运行测试一下。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FlameAlpha

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值