tensorflow初试:使用多层感知机预测MNIST数字

代码:https://github.com/BeCuriousCat/LearningML/blob/master/MLP_tensorflow.ipynb

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/",one_hot = True)

在这里插入图片描述
可以看到MNIST数据集中的数据如图所示

# 参数
#学习率,迭代次数,batch大小
learning_rate = 0.001
training_epochs = 15
batch_size = 100
display_step = 1

# 网络参数
n_hidden_1 = 256 # 第一层的特征数(神经元数)
n_hidden_2 = 256 # 2nd layer number of features
n_input = 784 # MNIST 输入
n_classes = 10 # MNIST 类别数(0-9)

# tf 图的输入
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes])

设置全局参数和占位符

# 创建多层感知机模型
def multilayer_perceptron(x, weights, biases):
    # Hidden layer with RELU activation
    layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
    layer_1 = tf.nn.relu(layer_1)
    # Hidden layer with RELU activation
    layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
    layer_2 = tf.nn.relu(layer_2)
    # Output layer with linear activation
    out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
    return out_layer

# 权重、偏置参数
weights = {
    'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
    'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
    'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
}
biases = {
    'b1': tf.Variable(tf.random_normal([n_hidden_1])),
    'b2': tf.Variable(tf.random_normal([n_hidden_2])),
    'out': tf.Variable(tf.random_normal([n_classes]))
}

定义模型与初始化参数

# 创建模型
pred = multilayer_perceptron(x, weights, biases)

# 定义 loss 和 optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

创建模型和定义损失函数、优化器

#初始化变量
init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)

    # 迭代次数
    for epoch in range(training_epochs):
        avg_cost = 0.
        total_batch = int(mnist.train.num_examples/batch_size)
        # Loop over all batches
        for i in range(total_batch):
            batch_x, batch_y = mnist.train.next_batch(batch_size)
            # Run optimization op (backprop) and cost op (to get loss value)
            _, c = sess.run([optimizer, cost], feed_dict={x: batch_x,
                                                          y: batch_y})
            # 计算平均误差
            avg_cost += c / total_batch
        # Display logs per epoch step
        if epoch % display_step == 0:
            print("Epoch:", '%04d' % (epoch+1), "cost=", \
                "{:.9f}".format(avg_cost))
    print( "Optimization Finished!")

    # Test model
    correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
    # Calculate accuracy
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
    
    
 
   #获取随机图片
    import random
    index = list(range(1,len(mnist.test.images)))
    random.shuffle(index)
    index = index[0:10]
    inp = [mnist.test.images[i] for i in index]
    #显示图片
    fig, ax = plt.subplots(
    nrows=2,
    ncols=5,
    sharex=True,
    sharey=True, )
 
    ax = ax.flatten()
    for i in range(10):
        img = inp[i].reshape(28, 28)
        ax[i].imshow(img, cmap='Greys', interpolation='nearest')

    ax[0].set_xticks([])
    ax[0].set_yticks([])
    plt.tight_layout()
    plt.show()
    #预测输出
    feed_dict = {x:inp}
    model_pred = tf.argmax(pred,1)
    classification = sess.run(model_pred,feed_dict)
    print(classification)

收集参数,训练、预测。
在这里插入图片描述可以看到经过15轮迭代之后,正确率已经达到了94.6%了

抽样输出预测结果
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 多层感知机是一种常用的神经网络模型,可以用于MNIST手写数字数据集的分类任务。该数据集包含了60000张28x28像素的训练图片和10000张测试图片,每张图片都是一个手写数字(0-9)。多层感知机可以通过多个隐藏层来提取图片的特征,然后将这些特征输入到输出层进行分类。在训练过程中,可以使用反向传播算法来更新模型参数,以使模型的分类准确率不断提高。 ### 回答2: 多层感知机是一种常用的深度学习模型,它由多个神经元层组成,可以用于实现复杂的模式识别任务。在mnist手写数字数据集分类任务中,多层感知机也是常用的模型之一。 mnist数据集是一个非常著名的数据集,包含了大量手写数字的图片及其对应的标签。每张图片都是28x28像素的灰度图片,标签是表示该图片所代表数字的整数。这个数据集通常用于测试机器学习算法在图像分类任务上的表现。 在使用多层感知机分类mnist数据集时,一般的方案是将每个像素点看做一个输入节点,而将网络输出层设计成10个节点,分别代表0到9这10个数字。中间层的节点数量可以根据需求进行设置。 一种常见的网络结构是使用两个隐层,每个隐层的节点数量为256。在训练过程中,使用反向传播算法对模型进行优化。同时,为了防止模型过拟合,可以使用dropout技术进行正则化。 在训练完成后,可以使用测试集对模型进行评估。一般使用准确率作为评估指标,即对测试集中每个样本进行预测,并将预测结果与真实标签进行比较。准确率越高,说明模型性能越好。 总而言之,多层感知机是一种有效的算法,可以在mnist手写数字数据集上达到较好的分类性能。但是需要注意的是,对于复杂的图像分类任务,需要设计更加复杂的网络结构并进行深度优化以提高准确率。 ### 回答3: 多层感知机是一种基于神经网络分类算法,它在处理手写数字数据集 mnist 时表现出色。 首先,多层感知机在处理 mnist 数据集时使用了多层神经网络结构,这使得它能够有效地在输入层和输出层之间构建更多的隐藏层,从而提高分类精度。具体来说,每个隐藏层都包含多个神经元,它们会对输入的数据进行逐层的变换处理,最终输出一个预测值,并且通过反向传播算法对网络参数进行优化。 其次,多层感知机在处理 mnist 数据集时,还使用了各种激活函数,如 Sigmoid、ReLU、Tanh 等。这些激活函数往往能够更好地在不同的层之间传递信息,因此对于处理 mnist 数据集这样的任务非常有效。 最后,多层感知机使用了一些优化算法,如随机梯度下降、Adam 等。这些算法可以加速网络的收敛速度,并且在训练过程中对神经网络中的参数进行优化调整,从而使其适应 mnist 数据集。 总之,多层感知机在处理 mnist 手写数字数据集分类任务时表现出色,这主要得益于其多层神经网络结构、各种激活函数以及优化算法的应用。随着深度学习技术的不断发展,多层感知机算法也将在更多的分类任务中发挥重要作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值