BZOJ 1304: [CQOI2009]叶子的染色 树形dp

17 篇文章 0 订阅
7 篇文章 1 订阅
本文介绍了一种使用树形动态规划(DP)的方法来解决一个特定的节点染色问题。该问题要求在一棵树中将节点染为两种颜色之一,并使相邻节点颜色不同,目标是最小化染色节点的数量。通过定义状态转移方程,实现了一个高效的解决方案。
摘要由CSDN通过智能技术生成

第一眼感觉像贪心,但是仔细想了想显然不行。

那么考虑dp,f[i][j]表示i这个节点染成j色后,以它为根的子树满足要求,需要染多少个点

j色的话……不包含无色,后面再讲


然后这是一棵无根树?怎么办?

反正也无所谓……你随便拎个非叶子节点当根就可以了,比如说假装是n+1

然后我们考虑转移


son[x]表示x的其中一个子节点

f[x][0]+=min(f[son[x]][0]-1,f[son[x]][1])

f[x][1]+=min(f[son[x]][0],f[son[x]][1]-1)

应该很显然

然后就可以做了

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <queue>
#include <string>
#include <map>
#include <cstring>
#include <ctime>
#include <vector>
#define inf 1e9
#define ll long long
#define N 1020
#define y1 orzzyy
#define For(i,j,k) for(int i=j;i<=k;i++)
#define Dow(i,j,k) for(int i=k;i>=j;i--)
using namespace std;
inline ll read(){   ll x=0,f=1;char ch=getchar();   while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}  while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}  return x*f; }
inline void write(ll x){    if (x<0) putchar('-'),x=-x; if (x>=10) write(x/10);   putchar(x%10+'0');  }
inline void writeln(ll x){write(x);puts("");}
int poi[50001],nxt[50001],head[50001],dp[50001][2];
int col[50001],n,m,x,y,cnt;
inline void add(int x,int y){poi[++cnt]=y;nxt[cnt]=head[x];head[x]=cnt;}
inline void dfs(int x,int fa)
{
    dp[x][0]=dp[x][1]=1;
    if(x<=n)
    {
        dp[x][0]=dp[x][1]=inf;
        dp[x][col[x]]=1;
    }
    for(int i=head[x];i;i=nxt[i])
    {
        if(poi[i]==fa)  continue;
        dfs(poi[i],x);
        dp[x][0]+=min(dp[poi[i]][0]-1,dp[poi[i]][1]);
        dp[x][1]+=min(dp[poi[i]][0],dp[poi[i]][1]-1);
    }
}
int main()
{
    m=read();n=read();
    For(i,1,n)  col[i]=read();
    For(i,1,m-1)
        x=read(),y=read(),add(x,y),add(y,x);
    dfs(n+1,-1);
    writeln(min(dp[n+1][0],dp[n+1][1]));
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值