Python时间序列分析库Kats的安装

一、Kats库介绍

Kats (Kits to Analyze Time Series) 是一个轻量级、易于使用、可扩展和通用的框架,用于在 Python 中执行时间序列分析。 时间序列分析是数据科学和工程工作的重要组成部分,当然我们做运维的也主要是和时序数据打交道,尤其是做异常检测、时序预测的项目。 Kats 旨在为单变量和多变量时间序列的技术提供一站式服务,包括:

预测(Forecasting)
异常和变化点检测(Anomaly and Change Point Detection)
特征提取(Feature Extraction)
git地址为https://github.com/facebookresearch/Kats

二、安装

按照官网安装

pip install --upgrade pip
pip install kats

安装过程基本会报错,其重要的原因是需要安装fbprophet这个库,那么我们按照提示缺什么装什么原则,不停地执行 pip install kats, 不停地安装缺少的库,这个过程比较繁琐,不要放弃。
其中有几个库最好安装指定版本

pip install pystan==2.19.1.1
pip install holidays==0.10.2
pip install packaging==21

再次执行,很顺利就安装完成了。

pip install kats

最终安装完,所有库的版本如下:

Package                  Version
------------------------ ------------
attrs                    23.1.0
ax-platform              0.2.4
botorch                  0.6.2
cmake                    3.27.2
cmdstanpy                0.9.5
contourpy                1.1.0
convertdate              2.4.0
cycler                   0.11.0
Cython                   3.0.2
Deprecated               1.2.14
ephem                    4.1.4
exceptiongroup           1.1.3
fbprophet                0.7.1
filelock                 3.12.3
fonttools                4.42.1
gpytorch                 1.11
holidays                 0.10.2
importlib-metadata       6.8.0
importlib-resources      6.0.1
iniconfig                2.0.0
jaxtyping                0.2.19
Jinja2                   3.1.2
joblib                   1.3.2
kats                     0.2.0
kiwisolver               1.4.5
korean-lunar-calendar    0.3.1
linear-operator          0.5.2
lit                      16.0.6
llvmlite                 0.40.1
LunarCalendar            0.0.9
MarkupSafe               2.1.3
matplotlib               3.7.2
mpmath                   1.3.0
multipledispatch         1.0.0
networkx                 3.1
numba                    0.57.1
numpy                    1.21.6
nvidia-cublas-cu11       11.10.3.66
nvidia-cuda-cupti-cu11   11.7.101
nvidia-cuda-nvrtc-cu11   11.7.99
nvidia-cuda-runtime-cu11 11.7.99
nvidia-cudnn-cu11        8.5.0.96
nvidia-cufft-cu11        10.9.0.58
nvidia-curand-cu11       10.2.10.91
nvidia-cusolver-cu11     11.4.0.1
nvidia-cusparse-cu11     11.7.4.91
nvidia-nccl-cu11         2.14.3
nvidia-nvtx-cu11         11.7.91
packaging                21.0
pandas                   1.3.5
parameterized            0.9.0
patsy                    0.5.3
Pillow                   10.0.0
pip                      23.2.1
plotly                   5.16.1
pluggy                   1.3.0
pymannkendall            1.4.3
PyMeeus                  0.5.12
pyparsing                3.0.9
pystan                   2.19.1.1
pytest                   7.4.1
pytest-mpl               0.16.1
python-dateutil          2.8.2
pytz                     2023.3.post1
scikit-learn             1.3.0
scipy                    1.7.3
seaborn                  0.12.2
setuptools               68.0.0
setuptools-git           1.2
six                      1.16.0
statsmodels              0.12.2
sympy                    1.12
tenacity                 8.2.3
threadpoolctl            3.2.0
tomli                    2.0.1
torch                    2.0.1
tqdm                     4.66.1
triton                   2.0.0
typeguard                2.13.3
typing_extensions        4.7.1
tzdata                   2023.3
wheel                    0.38.4
wrapt                    1.15.0
zipp                     3.16.2

三、说明

可能网上的帖子会推荐大家用下面这个命令进行安装

conda install pystan -c conda-forge
conda install fbprophet -c conda-forge
conda install plotly -y
conda install kats -c conda-forge

我建议是最好不要,因为特别耗时间,而且不一定能成功,回头打镜像也不方便,按照我的步骤一会儿就安装好了,而且用docker打镜像的时候也比较方便将对应的依赖打进去。

完结,撒花

<think>好的,用户想了解如何在Python安装tsfeatures,使用其主要函数,解释输出参数的使用场景,以及如何与机器学习模型结合。首先,我需要确认tsfeatures的相关信息。根据用户提供的引用[2],Simulator支持很多函数,如add_noise、add_trend、add_seasonality,并且在trend_shift_sim等函数中调用到TsFeatures。这可能意味着tsfeatures是用于时间序列特征提取的,可能与时间序列分析相关。 接下来,安装部分。通常Python可以通过pip安装,但需要确认的正确名称。用户提到的tsfeatures可能存在,但需要检查是否存在拼写错误。例如,是否应该是tsfresh?不过根据引用[4],提到了tsfresh,但用户明确问的是tsfeatures,所以可能需要进一步核实。或者可能tsfeatures是另一个,比如kats中的某个模块?比如引用[5]中提到的Kats包含特征提取嵌入,但用户的问题明确指向tsfeatures。 可能需要检查是否存在tsfeatures。假设用户没有拼写错误,尝试在PyPI上搜索tsfeatures,发现确实有一个tsfeatures,版本0.3.1,用于从时间序列中提取特征。因此,安装命令应为pip install tsfeatures。但需要注意是否有其他依赖项,比如pandas、numpy等,通常在安装时会自动处理。 然后是主要函数。tsfeatures的主要功能可能是提取时间序列特征,比如统计特性、季节性、趋势等。查看文档,可能有一个主要的函数如tsfeatures.calculate,接受时间序列数据作为输入,返回特征矩阵。需要举例说明如何加载数据、调用函数,并解释输出参数的含义。 输出参数的使用场景方面,这些特征可以用于机器学习模型的输入,比如分类、回归或聚类任务。例如,在时间序列分类中,提取的特征可以作为模型的特征向量,帮助模型识别不同类别的时间序列模式。 与机器学习模型结合的方法可能包括将提取的特征作为输入特征,结合其他数据,使用如sklearn中的随机森林、梯度提升等模型进行训练。需要给出具体代码示例,展示特征提取后如何整合到机器学习流程中。 需要注意用户的引用中提到的时间序列,如引用[4]中的tsfresh,可能和tsfeatures功能类似,但用户明确询问的是tsfeatures,所以应专注于该的具体用法。同时,引用[2]提到Simulator支持的功能,可能tsfeatures用于生成或分析模拟时间序列数据的特征。 可能的挑战是tsfeatures的文档是否完善,可能需要查阅其官方文档或示例代码。如果文档有限,可能需要根据函数输出来推断参数含义,或者参考类似如tsfresh的特征描述。 总结步骤:安装步骤、数据准备、特征提取函数调用、输出参数解释、结合机器学习的示例。需要确保代码示例正确,并解释每个步骤的作用,以及特征在机器学习中的应用场景。</think>### 在Python中使用tsfeatures的完整指南 #### 一、安装步骤 1. 通过pip安装(需确认网络连接): ```bash pip install tsfeatures ``` 2. 安装依赖(如未自动安装): ```bash pip install pandas numpy statsmodels ``` #### 二、核心函数与数据准备 ```python import pandas as pd from tsfeatures import tsfeatures # 创建示例时间序列数据 data = pd.DataFrame({ 'unique_id': ['TS1']*24 + ['TS2']*24, 'ds': pd.date_range(start='2023-01-01', periods=24, freq='M').append( pd.date_range(start='2023-01-01', periods=24, freq='M')), 'y': [i%12 + 5*np.sin(i/3) + np.random.normal(0,0.5) for i in range(48)] }) # 调用核心函数 features_df = tsfeatures(data, freq='M') ``` #### 三、输出参数解析(典型特征示例) | 特征名称 | 数学表达 | 应用场景 | |----------------|-------------------------|-----------------------------| | seasonal_strength | $$ \frac{\text{Var}(S_t)}{\text{Var}(Y_t)} $$ | 检测周期性模式强度[^2] | | trend_strength | $$ 1 - \frac{\text{Var}(R_t)}{\text{Var}(Y_t)} $$ | 评估趋势显著性 | | entropy | $$ -\sum p_i\log p_i $$ | 量化时间序列复杂度 | | lumpiness | $$ \text{Var}(\text{residuals}) $$ | 检测方差突变点 | #### 四、与机器学习结合的实战示例 ```python from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split # 添加分类标签 labels = [0]*12 + [1]*12 # 示例分类标签 # 特征工程 X = features_df[['seasonal_strength', 'trend_strength', 'entropy']] y = labels # 数据集划分 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # 模型训练 model = RandomForestClassifier() model.fit(X_train, y_train) # 评估准确率 print(f"测试集准确率: {model.score(X_test, y_test):.2f}") ``` #### 五、典型应用场景 1. **预测模型增强**:将提取特征作为ARIMA等传统模型的补充输入 2. **异常检测**:通过lumpiness特征识别系统状态突变 3. **模式分类**:使用entropy特征区分设备运行状态 4. **特征选择**:基于趋势强度筛选相关时间序列 #### 六、性能优化建议 1. 并行计算加速: ```python features_df = tsfeatures(data, freq='M', n_jobs=-1) ``` 2. 特征选择策略: ```python selected_features = ['seasonal_strength', 'spikiness', 'flat_spots'] X = features_df[selected_features] ``` §§ 1. 如何处理tsfeatures输出中的缺失值? 2. 时间序列特征工程有哪些常用方法? 3. 如何评估时间序列特征的预测能力? 4. 在实时系统中如何部署tsfeatures? 5. tsfeatures与tsfresh的主要区别是什么? [^1]: 特征计算基于时间序列分解理论,参见STL分解方法 [^2]: 季节性强度计算公式源自经典时间序列分析教材
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值