【实对称矩阵的对角化1】

文章详细解答了几个关于矩阵对角化的问题,包括计算特征值、特征向量,构建可逆矩阵P和对角矩阵Λ,使得P^-1AP=Λ,并展示了如何通过正交矩阵将对称矩阵转换为对角矩阵。
摘要由CSDN通过智能技术生成

实对称矩阵的对角化的习题

习题

1、设矩阵
A = ( − 2 1 1 0 2 0 − 4 1 3 ) , A=\left( \begin{matrix} -2&1&1\\ 0&2&0\\ -4&1&3 \end{matrix} \right), A= 204121103 ,
A A A能否对角化?若能,则求可逆矩阵 P P P和对角矩阵 Λ \Lambda Λ,使 P − 1 A P = Λ P^{-1}AP=\Lambda P1AP=Λ

解:
令 ∣ A − λ E ∣ = 0 = ∣ − 2 − λ 1 1 0 2 − λ 0 − 4 1 3 − λ ∣ = ( 2 − λ ) ∣ − 2 − λ 1 − 4 3 − λ ∣ = ( λ − 2 ) ( λ + 1 ) ( 2 − λ ) ⇒ λ 1 = − 1 , λ 2 = λ 3 = 2 \text{令} |A-\lambda E|=0=\left| \begin{matrix} -2-\lambda &1&1\\ 0&2-\lambda &0\\ -4&1&3-\lambda \end{matrix} \right|=(2-\lambda)\left| \begin{matrix} -2-\lambda &1\\ -4&3-\lambda \end{matrix} \right|=(\lambda-2)(\lambda+1)(2-\lambda)\\ \Rightarrow \lambda_1=-1,\lambda_2=\lambda_3=2 AλE=0= 2λ0412λ1103λ =(2λ) 2λ413λ =(λ2)(λ+1)(2λ)λ1=1,λ2=λ3=2

1) λ 1 = − 1 \lambda_1=-1 λ1=1时,
( − 1 1 1 0 3 0 − 4 1 4 ) → ( 1 − 1 − 1 0 3 0 0 − 3 0 ) → ( 1 − 1 − 1 0 1 0 0 0 0 ) → ( 1 0 − 1 0 1 0 0 0 0 ) ⇒ x = c 1 ( 1 0 1 ) ⇒ p 1 = ( 1 0 1 ) \left( \begin{matrix} -1&1&1\\ 0&3&0\\ -4&1&4 \end{matrix} \right)\to \left( \begin{matrix} 1&-1&-1\\ 0&3&0\\ 0&-3&0 \end{matrix} \right)\to \left( \begin{matrix} 1&-1&-1\\ 0&1&0\\ 0&0&0 \end{matrix} \right)\to \left( \begin{matrix} 1&0&-1\\ 0&1&0\\ 0&0&0 \end{matrix} \right)\Rightarrow x=c_1\left( \begin{matrix} 1\\ 0\\ 1 \end{matrix} \right)\Rightarrow p_1=\left( \begin{matrix} 1\\ 0\\ 1 \end{matrix} \right) 104131104 100133100 100110100 100010100 x=c1 101 p1= 101

2) λ 2 = λ 3 = 2 \lambda_2=\lambda_3=2 λ2=λ3=2时,
( − 4 1 1 0 0 0 − 4 1 1 ) → ( 1 − 1 4 − 1 4 0 0 0 0 0 0 ) ⇒ x = c 1 ( 1 4 1 0 ) + c 2 ( 1 4 0 1 ) ⇒ 线性无关特征向量 p 2 = ( 1 4 1 0 ) , p 3 = ( 1 4 0 1 ) ⇒ p 1 , p 2 , p 3 线性无关 ⇒ A 可对角化,记 P = ( p 1 , p 2 , p 3 ) = ( 1 1 4 1 4 0 1 0 1 0 1 ) ⇒ P − 1 A P = ( − 1 0 0 0 2 0 0 0 2 ) \left( \begin{matrix} -4&1&1\\ 0&0&0\\ -4&1&1 \end{matrix} \right)\to \left( \begin{matrix} 1&-\frac{1}{4}&-\frac{1}{4}\\ 0&0&0\\ 0&0&0 \end{matrix} \right)\Rightarrow x=c_1\left( \begin{matrix} \frac{1}{4}\\ 1\\ 0 \end{matrix} \right)+c_2\left( \begin{matrix} \frac{1}{4}\\ 0\\ 1 \end{matrix} \right)\Rightarrow \text{线性无关特征向量}p_2=\left( \begin{matrix} \frac{1}{4}\\ 1\\ 0 \end{matrix} \right),p_3=\left( \begin{matrix} \frac{1}{4}\\ 0\\ 1 \end{matrix} \right)\\ \Rightarrow p_1,p_2,p_3\text{线性无关}\Rightarrow A\text{可对角化,记}\\ P=(p_1,p_2,p_3)=\left( \begin{matrix} 1&\frac{1}{4}&\frac{1}{4}\\ 0&1&0\\ 1&0&1 \end{matrix} \right)\Rightarrow P^{-1}AP=\left( \begin{matrix} -1&0&0\\ 0&2&0\\ 0&0&2 \end{matrix} \right) 404101101 10041004100 x=c1 4110 +c2 4101 线性无关特征向量p2= 4110 ,p3= 4101 p1,p2,p3线性无关A可对角化,记P=(p1,p2,p3)= 10141104101 P1AP= 100020002

2、设
A = ( 0 0 1 1 1 t 1 0 0 ) , A=\left( \begin{matrix} 0&0&1\\ 1&1&t\\ 1&0&0 \end{matrix} \right), A= 0110101t0 ,
t t t为何值, A A A可对角化?

解:
令 ∣ A − λ E ∣ = 0 = ∣ − λ 0 1 1 1 − λ t 1 0 − λ ∣ = ( 1 − λ ) ∣ − λ 1 1 − λ ∣ = ( 1 − λ ) ( λ 2 − 1 ) ⇒ λ 1 = λ 2 = 1 , λ 3 = − 1 \text{令} |A-\lambda E|=0=\left| \begin{matrix} -\lambda &0&1\\ 1&1-\lambda &t\\ 1&0&-\lambda \end{matrix} \right|=(1-\lambda)\left| \begin{matrix} -\lambda &1\\ 1&-\lambda \end{matrix} \right|=(1-\lambda)(\lambda^2-1)\\ \Rightarrow \lambda_1=\lambda_2=1,\lambda_3=-1 AλE=0= λ1101λ01tλ =(1λ) λ11λ =(1λ)(λ21)λ1=λ2=1,λ3=1

1) λ 1 = λ 2 = 1 \lambda_1=\lambda_2=1 λ1=λ2=1时,
( − 1 0 1 1 0 t 1 0 − 1 ) → ( 1 0 − 1 0 0 t + 1 0 0 0 ) ⇒ t = − 1 时有2个线性无关的特征向量 , A 可对角化 \left( \begin{matrix} -1&0&1\\ 1&0&t\\ 1&0&-1 \end{matrix} \right)\to \left( \begin{matrix} 1&0&-1\\ 0&0&t+1\\ 0&0&0 \end{matrix} \right)\\ \Rightarrow t=-1\text{时有2个线性无关的特征向量},A\text{可对角化} 1110001t1 1000001t+10 t=1时有2个线性无关的特征向量,A可对角化

3、设矩阵 A = ( 2 0 1 3 1 x 4 0 5 ) A=\left( \begin{matrix} 2&0&1\\ 3&1&x\\ 4&0&5 \end{matrix} \right) A= 2340101x5 可对角化,求 x x x

解:
令 ∣ A − λ E ∣ = 0 = ∣ 2 − λ 0 1 3 1 − λ x 4 0 5 − λ ∣ = ( 1 − λ ) ∣ 2 − λ 1 4 5 − λ ∣ = ( 1 − λ ) ( λ − 1 ) ( λ − 6 ) ⇒ λ 1 = λ 2 = 1 , λ 3 = 6 \text{令} |A-\lambda E|=0=\left| \begin{matrix} 2-\lambda &0&1\\ 3&1-\lambda &x\\ 4&0&5-\lambda \end{matrix} \right|=(1-\lambda)\left| \begin{matrix} 2-\lambda &1\\ 4&5-\lambda \end{matrix} \right|=(1-\lambda)(\lambda-1)(\lambda-6)\\ \Rightarrow \lambda_1=\lambda_2=1,\lambda_3=6 AλE=0= 2λ3401λ01x5λ =(1λ) 2λ415λ =(1λ)(λ1)(λ6)λ1=λ2=1,λ3=6

1) λ 1 = λ 2 = 1 \lambda_1=\lambda_2=1 λ1=λ2=1时,
( 1 0 1 3 0 x 4 0 4 ) → ( 1 0 1 0 0 x − 3 0 0 0 ) ⇒ x = 3 时有2个线性无关的特征向量 , A 可对角化 \left( \begin{matrix} 1&0&1\\ 3&0&x\\ 4&0&4 \end{matrix} \right)\to \left( \begin{matrix} 1&0&1\\ 0&0&x-3\\ 0&0&0 \end{matrix} \right)\\ \Rightarrow x=3\text{时有2个线性无关的特征向量},A\text{可对角化} 1340001x4 1000001x30 x=3时有2个线性无关的特征向量,A可对角化

4、设
A = ( 0 − 1 1 − 1 0 1 1 1 0 ) , A=\left( \begin{matrix} 0&-1&1\\ -1&0&1\\ 1&1&0 \end{matrix} \right), A= 011101110 ,
求一个正交矩阵 P P P,使 P − 1 A P = Λ P^{-1}AP=\Lambda P1AP=Λ为对角矩阵。

解:
令 ∣ A − λ E ∣ = 0 = ∣ − λ − 1 1 − 1 − λ 1 1 1 − λ ∣ = ∣ 0 λ − 1 1 − λ 2 0 1 − λ 1 − λ 1 1 − λ ∣ = ∣ λ − 1 1 − λ 2 1 − λ 1 − λ ∣ = ( λ + 2 ) ( λ − 1 ) ( 1 − λ ) ⇒ λ 1 = λ 2 = 1 , λ 3 = − 2 \text{令} |A-\lambda E|=0=\left| \begin{matrix} -\lambda &-1&1\\ -1&-\lambda &1\\ 1&1&-\lambda \end{matrix} \right|=\left| \begin{matrix} 0 &\lambda-1&1-\lambda^2\\ 0&1-\lambda &1-\lambda\\ 1&1&-\lambda \end{matrix} \right|=\left| \begin{matrix} \lambda-1 &1-\lambda^2\\ 1-\lambda&1-\lambda \end{matrix} \right|=(\lambda+2)(\lambda-1)(1-\lambda)\\ \Rightarrow \lambda_1=\lambda_2=1,\lambda_3=-2 AλE=0= λ111λ111λ = 001λ11λ11λ21λλ = λ11λ1λ21λ =(λ+2)(λ1)(1λ)λ1=λ2=1,λ3=2

1) λ 1 = λ 2 = 1 \lambda_1=\lambda_2=1 λ1=λ2=1时,
( − 1 − 1 1 − 1 − 1 1 1 1 − 1 ) → ( 1 1 − 1 0 0 0 0 0 0 ) ⇒ ξ 1 = ( − 1 1 0 ) , ξ 2 = ( 1 0 1 ) 将 ξ 1 , ξ 2 正交化 , η 1 = ξ 1 = ( − 1 1 0 ) , η 2 = ξ 2 − [ η 1 , ξ 2 ] [ η 1 , η 1 ] ⋅ η 1 = ( 1 0 1 ) − − 1 1 + 1 ( − 1 1 0 ) = ( 1 2 1 2 1 ) \left( \begin{matrix} -1&-1&1\\ -1&-1&1\\ 1&1&-1 \end{matrix} \right)\to \left( \begin{matrix} 1&1&-1\\ 0&0&0\\ 0&0&0 \end{matrix} \right)\Rightarrow \xi_1=\left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right),\xi_2=\left( \begin{matrix} 1\\ 0\\ 1 \end{matrix} \right)\\ \text{将}\xi_1,\xi_2\text{正交化},\eta_1=\xi_1=\left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right),\eta_2=\xi_2-\frac{[\eta_1,\xi_2]}{[\eta_1,\eta_1]}\cdot \eta_1=\left( \begin{matrix} 1\\ 0\\ 1 \end{matrix} \right)-\frac{-1}{1+1}\left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right)=\left( \begin{matrix} \frac{1}{2}\\ \frac{1}{2}\\ 1 \end{matrix} \right) 111111111 100100100 ξ1= 110 ,ξ2= 101 ξ1,ξ2正交化,η1=ξ1= 110 ,η2=ξ2[η1,η1][η1,ξ2]η1= 101 1+11 110 = 21211

η 1 , η 2 \eta_1,\eta_2 η1,η2单位化,
⇒ p 1 = 1 2 ( − 1 1 0 ) , p 2 = 1 6 ( 1 1 2 ) \Rightarrow p_1=\frac{1}{\sqrt{2}}\left( \begin{matrix} -1\\ 1\\ 0 \end{matrix} \right),p_2=\frac{1}{\sqrt{6}}\left( \begin{matrix} 1\\ 1\\ 2 \end{matrix} \right) p1=2 1 110 ,p2=6 1 112

2) λ 3 = − 2 \lambda_3=-2 λ3=2时,
( 2 − 1 1 − 1 2 1 1 1 2 ) → ( 1 1 2 0 3 3 0 − 3 − 3 ) → ( 1 1 2 0 1 1 0 0 0 ) → ( 1 0 1 0 1 1 0 0 0 ) ⇒ x = c 3 ( − 1 − 1 1 ) , ξ 3 = ( − 1 − 1 1 ) 将 ξ 3 单位化 ⇒ p 3 = 1 3 ( − 1 − 1 1 ) \left( \begin{matrix} 2&-1&1\\ -1&2&1\\ 1&1&2 \end{matrix} \right)\to \left( \begin{matrix} 1&1&2\\ 0&3&3\\ 0&-3&-3 \end{matrix} \right)\to \left( \begin{matrix} 1&1&2\\ 0&1&1\\ 0&0&0 \end{matrix} \right)\to \left( \begin{matrix} 1&0&1\\ 0&1&1\\ 0&0&0 \end{matrix} \right)\Rightarrow x=c_3\left( \begin{matrix} -1\\ -1\\ 1 \end{matrix} \right),\xi_3=\left( \begin{matrix} -1\\ -1\\ 1 \end{matrix} \right)\\ \text{将}\xi_3\text{单位化}\Rightarrow p_3=\frac{1}{\sqrt{3}}\left( \begin{matrix} -1\\ -1\\ 1 \end{matrix} \right) 211121112 100133233 100110210 100010110 x=c3 111 ,ξ3= 111 ξ3单位化p3=3 1 111

p 1 , p 2 , p 3 p_1,p_2,p_3 p1,p2,p3构成正交矩阵,
P = ( p 1 , p 2 , p 3 ) = ( − 1 3 − 1 2 1 6 − 1 3 1 2 1 6 1 3 0 2 6 ) ⇒ P − 1 A P = P T A P = Λ = ( − 2 0 0 0 1 0 0 0 1 ) P=(p_1,p_2,p_3)=\left( \begin{matrix} -\frac{1}{\sqrt{3}}&-\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{6}}\\ -\frac{1}{\sqrt{3}}&\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{6}}\\ \frac{1}{\sqrt{3}}&0&\frac{2}{\sqrt{6}} \end{matrix} \right)\Rightarrow P^{-1}AP=P^TAP=\Lambda=\left( \begin{matrix} -2&0&0\\ 0&1&0\\ 0&0&1 \end{matrix} \right) P=(p1,p2,p3)= 3 13 13 12 12 106 16 16 2 P1AP=PTAP=Λ= 200010001

5、设 A = ( 2 − 1 − 1 2 ) A=\left( \begin{matrix} 2&-1\\ -1&2 \end{matrix} \right) A=(2112),求 A n A^n An

解:
令 ∣ A − λ E ∣ = 0 = ∣ 2 − λ − 1 − 1 2 − λ ∣ = ( λ − 1 ) ( λ − 3 ) ⇒ λ 1 = 1 , λ 2 = 3 \text{令} |A-\lambda E|=0=\left| \begin{matrix} 2-\lambda &-1\\ -1&2-\lambda \end{matrix} \right|=(\lambda-1)(\lambda-3)\\ \Rightarrow \lambda_1=1,\lambda_2=3 AλE=0= 2λ112λ =(λ1)(λ3)λ1=1,λ2=3

1) λ 1 = 1 \lambda_1=1 λ1=1时,
( 1 − 1 − 1 1 ) → ( 1 − 1 0 0 ) ⇒ p 1 = ( 1 1 ) \left( \begin{matrix} 1&-1\\ -1&1 \end{matrix} \right)\to \left( \begin{matrix} 1&-1\\ 0&0 \end{matrix} \right)\Rightarrow p_1=\left( \begin{matrix} 1\\ 1 \end{matrix} \right) (1111)(1010)p1=(11)

2) λ 2 = 3 \lambda_2=3 λ2=3时,
( − 1 − 1 − 1 − 1 ) → ( 1 1 0 0 ) ⇒ p 2 = ( − 1 1 ) ⇒ P = ( p 1 , p 2 ) = ( 1 − 1 1 1 ) ⇒ P − 1 = ( 1 2 1 2 − 1 2 1 2 ) 使 P − 1 A P = Λ = ( 1 0 0 3 ) ⇒ A n = P Λ n P − 1 = ( 1 − 1 1 1 ) ( 1 0 0 3 n ) ( 1 2 1 2 − 1 2 1 2 ) = ( 1 − 3 n 1 3 n ) ( 1 2 1 2 − 1 2 1 2 ) = 1 2 ( 1 + 3 n 1 − 3 n 1 − 3 n 1 + 3 n ) \left( \begin{matrix} -1&-1\\ -1&-1 \end{matrix} \right)\to \left( \begin{matrix} 1&1\\ 0&0 \end{matrix} \right)\Rightarrow p_2=\left( \begin{matrix} -1\\ 1 \end{matrix} \right)\\ \Rightarrow P=(p_1,p_2)=\left( \begin{matrix} 1&-1\\ 1&1 \end{matrix} \right)\Rightarrow P^{-1}=\left( \begin{matrix} \frac{1}{2}&\frac{1}{2}\\ -\frac{1}{2}&\frac{1}{2} \end{matrix} \right)\text{使}P^{-1}AP=\Lambda=\left( \begin{matrix} 1&0\\ 0&3 \end{matrix} \right)\\ \Rightarrow A^n=P\Lambda^n P^{-1}=\left( \begin{matrix} 1&-1\\ 1&1 \end{matrix} \right)\left( \begin{matrix} 1&0\\ 0&3^n \end{matrix} \right)\left( \begin{matrix} \frac{1}{2}&\frac{1}{2}\\ -\frac{1}{2}&\frac{1}{2} \end{matrix} \right)=\left( \begin{matrix} 1&-3^n\\ 1&3^n \end{matrix} \right)\left( \begin{matrix} \frac{1}{2}&\frac{1}{2}\\ -\frac{1}{2}&\frac{1}{2} \end{matrix} \right)=\frac{1}{2}\left( \begin{matrix} 1+3^n&1-3^n\\ 1-3^n&1+3^n \end{matrix} \right) (1111)(1010)p2=(11)P=(p1,p2)=(1111)P1=(21212121)使P1AP=Λ=(1003)An=PΛnP1=(1111)(1003n)(21212121)=(113n3n)(21212121)=21(1+3n13n13n1+3n)

6、试求一个正交的相似变换矩阵,将下列对称矩阵转化为对角阵;
(1) ( 2 − 2 0 − 2 1 − 2 0 − 2 0 ) \left( \begin{matrix} 2&-2&0\\ -2&1&-2\\ 0&-2&0 \end{matrix} \right) 220212020 ;(2) ( 2 2 − 2 2 5 − 4 − 2 − 4 5 ) \left( \begin{matrix} 2&2&-2\\ 2&5&-4\\ -2&-4&5 \end{matrix} \right) 222254245

解:(1)
令 ∣ A − λ E ∣ = 0 = ∣ 2 − λ − 2 0 − 2 1 − λ − 2 0 − 2 − λ ∣ = ( 1 − λ ) ( λ − 4 ) ( λ + 2 ) ⇒ λ 1 = 1 , = λ 2 = 4 , λ 3 = − 2 λ i 不相等 ⇒ 特征向量线性无关,只需单位化 \text{令} |A-\lambda E|=0=\left| \begin{matrix} 2-\lambda &-2&0\\ -2&1-\lambda &-2\\ 0&-2&-\lambda \end{matrix} \right|=(1-\lambda)(\lambda-4)(\lambda+2)\\ \Rightarrow \lambda_1=1,=\lambda_2=4,\lambda_3=-2\\ \lambda_i\text{不相等}\Rightarrow \text{特征向量线性无关,只需单位化} AλE=0= 2λ2021λ202λ =(1λ)(λ4)(λ+2)λ1=1,=λ2=4,λ3=2λi不相等特征向量线性无关,只需单位化

1) λ 1 = 1 \lambda_1=1 λ1=1时,
( 1 − 2 0 − 2 0 − 2 0 − 2 − 1 ) → ( 1 − 2 0 0 − 4 − 2 0 − 2 − 1 ) → ( 1 − 2 0 0 1 1 2 0 0 0 ) → ( 1 0 1 0 1 1 2 0 0 0 ) ⇒ ξ 1 = ( − 1 − 1 2 1 ) ⇒ p 1 = 1 3 ( − 2 − 1 2 ) \left( \begin{matrix} 1&-2&0\\ -2&0&-2\\ 0&-2&-1 \end{matrix} \right)\to \left( \begin{matrix} 1&-2&0\\ 0&-4&-2\\ 0&-2&-1 \end{matrix} \right)\to \left( \begin{matrix} 1&-2&0\\ 0&1&\frac{1}{2}\\ 0&0&0 \end{matrix} \right)\to \left( \begin{matrix} 1&0&1\\ 0&1&\frac{1}{2}\\ 0&0&0 \end{matrix} \right)\Rightarrow \xi_1=\left( \begin{matrix} -1\\ -\frac{1}{2}\\ 1 \end{matrix} \right)\Rightarrow p_1=\frac{1}{3}\left( \begin{matrix} -2\\ -1\\ 2 \end{matrix} \right) 120202021 100242021 1002100210 1000101210 ξ1= 1211 p1=31 212

2) λ 2 = 4 \lambda_2=4 λ2=4时,
( − 2 − 2 0 − 2 − 3 − 2 0 − 2 − 4 ) → ( 1 1 0 0 − 1 − 2 0 − 2 − 4 ) → ( 1 1 0 0 1 2 0 0 0 ) → ( 1 0 − 2 0 1 2 0 0 0 ) ⇒ ξ 2 = ( 2 − 2 1 ) ⇒ p 2 = 1 3 ( 2 − 2 1 ) \left( \begin{matrix} -2&-2&0\\ -2&-3&-2\\ 0&-2&-4 \end{matrix} \right)\to \left( \begin{matrix} 1&1&0\\ 0&-1&-2\\ 0&-2&-4 \end{matrix} \right)\to \left( \begin{matrix} 1&1&0\\ 0&1&2\\ 0&0&0 \end{matrix} \right)\to \left( \begin{matrix} 1&0&-2\\ 0&1&2\\ 0&0&0 \end{matrix} \right)\Rightarrow \xi_2=\left( \begin{matrix} 2\\ -2\\ 1 \end{matrix} \right)\Rightarrow p_2=\frac{1}{3}\left( \begin{matrix} 2\\ -2\\ 1 \end{matrix} \right) 220232024 100112024 100110020 100010220 ξ2= 221 p2=31 221

3) λ 3 = − 2 \lambda_3=-2 λ3=2时,
( 4 − 2 0 − 2 3 − 2 0 − 2 2 ) → ( 2 − 1 0 0 2 − 2 0 − 2 2 ) → ( 2 − 1 0 0 1 − 1 0 0 0 ) → ( 2 0 − 1 0 1 − 1 0 0 0 ) → ( 1 0 − 1 2 0 1 − 1 0 0 0 ) ⇒ ξ 3 = ( 1 2 2 ) ⇒ p 3 = 1 3 ( 1 2 2 ) ⇒ P = ( p 1 , p 2 , p 3 ) = ( − 2 3 2 3 1 3 − 1 3 − 2 3 2 3 2 3 1 3 2 3 ) = 1 3 ( − 2 2 1 − 1 − 2 2 2 1 2 ) ⇒ P − 1 A P = P T A P = ( 1 0 0 0 4 0 0 0 − 2 ) \left( \begin{matrix} 4&-2&0\\ -2&3&-2\\ 0&-2&2 \end{matrix} \right)\to \left( \begin{matrix} 2&-1&0\\ 0&2&-2\\ 0&-2&2 \end{matrix} \right)\to \left( \begin{matrix} 2&-1&0\\ 0&1&-1\\ 0&0&0 \end{matrix} \right)\to \left( \begin{matrix} 2&0&-1\\ 0&1&-1\\ 0&0&0 \end{matrix} \right)\to \left( \begin{matrix} 1&0&-\frac{1}{2}\\ 0&1&-1\\ 0&0&0 \end{matrix} \right)\Rightarrow \xi_3=\left( \begin{matrix} 1\\ 2\\ 2 \end{matrix} \right)\Rightarrow p_3=\frac{1}{3}\left( \begin{matrix} 1\\ 2\\ 2 \end{matrix} \right)\\ \Rightarrow P=(p_1,p_2,p_3)=\left( \begin{matrix} -\frac{2}{3}&\frac{2}{3}&\frac{1}{3}\\ -\frac{1}{3}&-\frac{2}{3}&\frac{2}{3}\\ \frac{2}{3}&\frac{1}{3}&\frac{2}{3} \end{matrix} \right)=\frac{1}{3}\left( \begin{matrix} -2&2&1\\ -1&-2&2\\ 2&1&2 \end{matrix} \right)\\ \Rightarrow P^{-1}AP=P^TAP=\left( \begin{matrix} 1&0&0\\ 0&4&0\\ 0&0&-2 \end{matrix} \right) 420232022 200122022 200110010 200010110 1000102110 ξ3= 122 p3=31 122 P=(p1,p2,p3)= 323132323231313232 =31 212221122 P1AP=PTAP= 100040002

(2)
令 ∣ A − λ E ∣ = 0 = ∣ 2 − λ 2 − 2 2 5 − λ − 4 − 2 − 4 5 − λ ∣ = ∣ 2 − λ 2 − 2 0 1 − λ 1 − λ − 2 − 4 5 − λ ∣ = ( 1 − λ ) ( λ − 1 ) ( λ − 10 ) ⇒ λ 1 = λ 2 = 1 , λ 3 = 10 \text{令} |A-\lambda E|=0=\left| \begin{matrix} 2-\lambda &2&-2\\ 2&5-\lambda &-4\\ -2&-4&5-\lambda \end{matrix} \right|=\left| \begin{matrix} 2-\lambda &2&-2\\ 0&1-\lambda &1-\lambda\\ -2&-4&5-\lambda \end{matrix} \right|=(1-\lambda)(\lambda-1)(\lambda-10)\\ \Rightarrow \lambda_1=\lambda_2=1,\lambda_3=10 AλE=0= 2λ2225λ4245λ = 2λ0221λ421λ5λ =(1λ)(λ1)(λ10)λ1=λ2=1,λ3=10

1) λ 1 = λ 2 = 1 \lambda_1=\lambda_2=1 λ1=λ2=1时,
( 1 2 − 2 2 4 − 4 − 2 − 4 4 ) → ( 1 2 − 2 0 0 0 0 0 0 ) ⇒ ξ 1 = ( − 2 1 0 ) , ξ 2 = ( 2 0 1 ) 正交化 η 1 = ξ 1 = ( − 2 1 0 ) η 2 = ξ 2 − [ η 1 , ξ 2 ] [ η 1 . η 1 ] ⋅ η 1 = ( 2 0 1 ) − − 4 4 + 1 ( − 2 1 0 ) = 1 5 ( 2 4 5 ) 单位化 p 1 = 1 5 ( − 2 1 0 ) , p 2 = 1 3 5 ( 2 4 5 ) \left( \begin{matrix} 1&2&-2\\ 2&4&-4\\ -2&-4&4 \end{matrix} \right)\to \left( \begin{matrix} 1&2&-2\\ 0&0&0\\ 0&0&0 \end{matrix} \right) \Rightarrow \xi_1=\left( \begin{matrix} -2\\ 1\\ 0 \end{matrix} \right),\xi_2=\left( \begin{matrix} 2\\ 0\\ 1 \end{matrix} \right)\\ \text{正交化}\eta_1=\xi_1=\left( \begin{matrix} -2\\ 1\\ 0 \end{matrix} \right)\\ \eta_2=\xi_2-\frac{[\eta_1,\xi_2]}{[\eta_1.\eta_1]}\cdot \eta_1=\left( \begin{matrix} 2\\ 0\\ 1 \end{matrix} \right)-\frac{-4}{4+1}\left( \begin{matrix} -2\\ 1\\ 0 \end{matrix} \right)=\frac{1}{5}\left( \begin{matrix} 2\\ 4\\ 5 \end{matrix} \right)\\ \text{单位化}p_1=\frac{1}{\sqrt{5}}\left( \begin{matrix} -2\\ 1\\ 0 \end{matrix} \right),p_2=\frac{1}{3\sqrt{5}}\left( \begin{matrix} 2\\ 4\\ 5 \end{matrix} \right) 122244244 100200200 ξ1= 210 ,ξ2= 201 正交化η1=ξ1= 210 η2=ξ2[η1.η1][η1,ξ2]η1= 201 4+14 210 =51 245 单位化p1=5 1 210 ,p2=35 1 245

2) λ 3 = 10 \lambda_3=10 λ3=10时,
( − 8 2 − 2 2 − 5 − 4 − 2 − 4 − 5 ) → ( − 4 1 − 1 2 − 5 − 4 0 − 9 − 9 ) → ( 0 − 9 − 9 2 − 5 − 4 0 1 1 ) → ( 2 − 5 − 4 0 1 1 0 0 0 ) → ( 2 0 1 0 1 1 0 0 0 ) → ( 1 0 1 2 0 1 1 0 0 0 ) ⇒ ξ 3 = ( − 1 − 2 2 ) ⇒ p 3 = 1 3 ( − 1 − 2 2 ) ⇒ P = ( p 1 , p 2 , p 3 ) = ( − 2 5 2 3 5 − 1 3 1 5 4 3 5 − 2 3 0 5 3 5 2 3 ) ⇒ P − 1 A P = P T A P = ( 1 0 0 0 1 0 0 0 10 ) \left( \begin{matrix} -8&2&-2\\ 2&-5&-4\\ -2&-4&-5 \end{matrix} \right)\to \left( \begin{matrix} -4&1&-1\\ 2&-5&-4\\ 0&-9&-9 \end{matrix} \right)\to \left( \begin{matrix} 0&-9&-9\\ 2&-5&-4\\ 0&1&1 \end{matrix} \right)\to \left( \begin{matrix} 2&-5&-4\\ 0&1&1\\ 0&0&0 \end{matrix} \right)\to \left( \begin{matrix} 2&0&1\\ 0&1&1\\ 0&0&0 \end{matrix} \right)\to \left( \begin{matrix} 1&0&\frac{1}{2}\\ 0&1&1\\ 0&0&0 \end{matrix} \right)\Rightarrow \xi_3=\left( \begin{matrix} -1\\ -2\\ 2 \end{matrix} \right)\Rightarrow p_3=\frac{1}{3}\left( \begin{matrix} -1\\ -2\\ 2 \end{matrix} \right)\\ \Rightarrow P=(p_1,p_2,p_3)=\left( \begin{matrix} -\frac{2}{\sqrt{5}}&\frac{2}{3\sqrt{5}}&-\frac{1}{3}\\ \frac{1}{\sqrt{5}}&\frac{4}{3\sqrt{5}}&-\frac{2}{3}\\ 0&\frac{5}{3\sqrt{5}}&\frac{2}{3} \end{matrix} \right)\\ \Rightarrow P^{-1}AP=P^TAP=\left( \begin{matrix} 1&0&0\\ 0&1&0\\ 0&0&10 \end{matrix} \right) 822254245 420159149 020951941 200510410 200010110 1000102110 ξ3= 122 p3=31 122 P=(p1,p2,p3)= 5 25 1035 235 435 5313232 P1AP=PTAP= 1000100010

7、设矩阵 A = ( 1 − 2 − 4 − 2 x − 2 − 4 − 2 1 ) A=\left( \begin{matrix} 1&-2&-4\\ -2&x&-2\\ -4&-2&1 \end{matrix} \right) A= 1242x2421 Λ = ( 5 0 0 0 − 4 0 0 0 y ) \Lambda=\left( \begin{matrix} 5&0&0\\ 0&-4&0\\ 0&0&y \end{matrix} \right) Λ= 50004000y 相似,求 x , y x,y x,y;求一个正交矩阵 P P P,使 P − 1 A P = Λ P^{-1}AP=\Lambda P1AP=Λ

解: λ 1 + λ 2 + λ 3 = 1 + x + 1 = 1 + y = 2 + x ⇒ y = 1 + x \lambda_1+\lambda_2+\lambda_3=1+x+1=1+y=2+x\Rightarrow y=1+x λ1+λ2+λ3=1+x+1=1+y=2+xy=1+x
λ = − 4 , 5 , y ⇒ ∣ A − λ E ∣ = ∣ A + 4 E ∣ = 0 = ∣ 5 − 2 − 4 − 2 x + 4 − 2 − 4 − 2 5 ∣ = ∣ 5 − 2 − 4 − 2 x + 4 − 2 − 9 0 9 ∣ = ∣ 1 − 2 − 4 − 4 x + 4 − 2 0 0 9 ∣ = 9 ∣ 1 − 2 − 4 x + 4 ∣ = 9 ( x − 4 ) ⇒ x = 4 , y = 5 \lambda=-4,5,y\\ \Rightarrow |A-\lambda E|=|A+4E|=0=\left| \begin{matrix} 5 &-2&-4\\ -2&x+4 &-2\\ -4&-2&5 \end{matrix} \right|=\left| \begin{matrix} 5 &-2&-4\\ -2&x+4 &-2\\ -9&0&9 \end{matrix} \right|=\left| \begin{matrix} 1 &-2&-4\\ -4&x+4 &-2\\ 0&0&9 \end{matrix} \right|=9\left| \begin{matrix} 1 &-2\\ -4&x+4 \end{matrix} \right|=9(x-4)\\ \Rightarrow x=4,y=5 λ=4,5,yAλE=A+4E=0= 5242x+42425 = 5292x+40429 = 1402x+40429 =9 142x+4 =9(x4)x=4,y=5

1) λ 1 = − 4 \lambda_1=-4 λ1=4时,
( 5 − 2 − 4 − 2 8 − 2 − 4 − 2 5 ) → ( 1 − 4 1 5 − 2 − 4 − 4 − 2 5 ) → ( 1 − 4 1 0 18 − 9 0 − 18 9 ) → ( 1 − 4 1 0 2 − 1 0 0 0 ) → ( 1 0 − 1 0 1 − 1 2 0 0 0 ) ⇒ ξ 1 = ( 2 1 2 ) ⇒ p 1 = 1 3 ( 2 1 2 ) \left( \begin{matrix} 5&-2&-4\\ -2&8&-2\\ -4&-2&5 \end{matrix} \right)\to \left( \begin{matrix} 1&-4&1\\ 5&-2&-4\\ -4&-2&5 \end{matrix} \right)\to \left( \begin{matrix} 1&-4&1\\ 0&18&-9\\ 0&-18&9 \end{matrix} \right)\to \left( \begin{matrix} 1&-4&1\\ 0&2&-1\\ 0&0&0 \end{matrix} \right)\to \left( \begin{matrix} 1&0&-1\\ 0&1&-\frac{1}{2}\\ 0&0&0 \end{matrix} \right)\Rightarrow \xi_1=\left( \begin{matrix} 2\\ 1\\ 2 \end{matrix} \right)\Rightarrow p_1=\frac{1}{3}\left( \begin{matrix} 2\\ 1\\ 2 \end{matrix} \right) 524282425 154422145 10041818199 100420110 1000101210 ξ1= 212 p1=31 212

2) λ 2 = λ 3 = 5 \lambda_2=\lambda_3=5 λ2=λ3=5时,
( − 4 − 2 − 4 − 2 − 1 − 2 − 4 − 2 − 4 ) → ( 2 1 2 0 0 0 0 0 0 ) → ( 1 1 2 1 0 0 0 0 0 0 ) ] ⇒ ξ 2 = ( − 1 2 0 ) ⇒ ξ 3 = ( − 1 0 1 ) 正交化 η 2 = ξ 2 = ( − 1 2 0 ) , η 3 = ξ 3 − [ η 2 , ξ 3 ] [ η 2 , η 2 ] ⋅ η 2 = ( − 1 0 1 ) − 1 1 + 4 ( − 1 2 0 ) = 1 5 ( − 4 − 2 5 ) 单位化 p 2 = 1 5 ( − 1 2 0 ) , p 3 = 1 3 5 ( − 4 − 2 5 ) ⇒ P = ( p 1 , p 2 , p 3 ) = ( − 1 5 2 3 − 4 3 5 2 5 1 3 − 2 3 5 0 2 3 5 3 5 ) \left( \begin{matrix} -4&-2&-4\\ -2&-1&-2\\ -4&-2&-4 \end{matrix} \right)\to \left( \begin{matrix} 2&1&2\\ 0&0&0\\ 0&0&0 \end{matrix} \right)\to \left( \begin{matrix} 1&\frac{1}{2}&1\\ 0&0&0\\ 0&0&0 \end{matrix} \right)]\Rightarrow \xi_2=\left( \begin{matrix} -1\\ 2\\ 0 \end{matrix} \right)\Rightarrow \xi_3=\left( \begin{matrix} -1\\ 0\\ 1 \end{matrix} \right)\\ \text{正交化}\eta_2=\xi_2=\left( \begin{matrix} -1\\ 2\\ 0 \end{matrix} \right),\\ \eta_3=\xi_3-\frac{[\eta_2,\xi_3]}{[\eta_2,\eta_2]}\cdot \eta_2=\left( \begin{matrix} -1\\ 0\\ 1 \end{matrix} \right)-\frac{1}{1+4}\left( \begin{matrix} -1\\ 2\\ 0 \end{matrix} \right)=\frac{1}{5}\left( \begin{matrix} -4\\ -2\\ 5 \end{matrix} \right)\\ \text{单位化}p_2=\frac{1}{\sqrt{5}}\left( \begin{matrix} -1\\ 2\\ 0 \end{matrix} \right),p_3=\frac{1}{3\sqrt{5}}\left( \begin{matrix} -4\\ -2\\ 5 \end{matrix} \right)\\ \Rightarrow P=(p_1,p_2,p_3)=\left( \begin{matrix} -\frac{1}{\sqrt{5}}&\frac{2}{3}&-\frac{4}{3\sqrt{5}}\\ \frac{2}{\sqrt{5}}&\frac{1}{3}&-\frac{2}{3\sqrt{5}}\\ 0&\frac{2}{3}&\frac{5}{3\sqrt{5}} \end{matrix} \right) 424212424 200100200 1002100100 ]ξ2= 120 ξ3= 101 正交化η2=ξ2= 120 ,η3=ξ3[η2,η2][η2,ξ3]η2= 101 1+41 120 =51 425 单位化p2=5 1 120 ,p3=35 1 425 P=(p1,p2,p3)= 5 15 2032313235 435 235 5

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值