每个元素都为实数的对角矩阵称为实对称矩阵,实对称矩阵必定相似于一个对角矩阵(对角线以外的元素全为0的矩阵),即存在可逆矩阵P,使得,且存在正交矩阵Q,使得
实对称矩阵化为对角矩阵的步骤:
1.找出全部特征值
2.找出每个特征值对应的方程组,的基础解系,如果为k重根,那么基础解系必定有k个线性无关的特征向量。
3.如果2中,存在某个特征值对应的多个特征向量不正交,那么就要正交化那k个向量,具体做法一般为施密特正交化(不同特征值的向量之间必定正交,而且这一条只对实对称矩阵成立)将转化为
4.将所有正交的特征向量单位化
5.将n个特征向量合并为正交矩阵,记为
最终
注,对角矩阵里元素的顺序与Q对应,例如Q中,前三个向量对应的特征值分别为1,1,2,那么对角线上前三个元素也必定为1,1,2
且对于其他n阶矩阵,如果有n个不同的特征值,或是k重特征值的k个对应的k个特征向量线性无关,则也可以相似对角化,方法与上文类似,即求出特征值,特征向量(不需要单位化,只需要内部的数没有过公约数了即可)。特征向量拼在一起组成P,,特诊向量的顺序和特征值顺序对应