实对称矩阵的相似对角化

每个元素都为实数的对角矩阵称为实对称矩阵,实对称矩阵必定相似于一个对角矩阵(对角线以外的元素全为0的矩阵),即存在可逆矩阵P,使得P^{-1}AP=\Lambda,且存在正交矩阵Q,使得Q^{-1}AQ=Q^{T}AQ=\Lambda

实对称矩阵化为对角矩阵的步骤

1.找出全部特征值

2.找出每个特征值对应的方程组,(\lambda_{i} E-A)x=0的基础解系,如果\lambda _{i}为k重根,那么基础解系必定有k个线性无关的特征向量。

3.如果2中,存在某个特征值对应的多个特征向量不正交,那么就要正交化那k个向量,具体做法一般为施密特正交化(不同特征值的向量之间必定正交,而且这一条只对实对称矩阵成立)将\alpha _{i1},\alpha _{i2}...\alpha _{ik}转化为\beta _{i1},\beta _{i2}...\beta _{ik}

4.将所有正交的特征向量单位化

5.将n个特征向量合并为正交矩阵,记为

Q=[\beta _{11}^{o},\beta _{12}^{o}...\beta _{1k_{1}}^{o},\beta _{21}^{o},\beta _{22}^{o}...\beta _{2k_{2}}^{o}...\beta _{r1}^{o},\beta _{r2}^{o}...\beta _{rk_{r}}^{o}]

最终\dpi{150} Q^{-1}AQ=Q^{T}AQ=\Lambda

注,对角矩阵里元素的顺序与Q对应,例如Q中,前三个向量对应的特征值分别为1,1,2,那么对角线上前三个元素也必定为1,1,2

 

且对于其他n阶矩阵,如果有n个不同的特征值,或是k重特征值的k个对应的k个特征向量线性无关,则也可以相似对角化,方法与上文类似,即求出特征值,特征向量(不需要单位化,只需要内部的数没有过公约数了即可)。特征向量拼在一起组成P,\dpi{150} P^{-1}AP=\Lambda,特诊向量的顺序和特征值顺序对应

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值