实对称矩阵对角化为什么要做正交化单位化操作呢?

今天晚上王小民同学问了助教姐姐一个问题,为什么对一个一般的矩阵对角化的时候,我们不用做正交单位化,对实对称矩阵对角化的时候却要做呢?这是一个很好的问题,所以和大家分享一下。


最后的结论就是:如果不做正交单位话,我们一样可以通过U(把特征向量按照列写成的矩阵),把一个实对称矩阵对角化为以它的特征值为对角元的对角矩阵

我们知道,对应一个特征值的特征向量乘以任何一个非零的系数,仍然还是对应着这个特征值的特征向量,如果一个特征值对应多个特征向量,那在它们张成的空间里找出同样数量的线性不相关的向量,也都是这个特征值的特征向量,所以说特征向量并不唯一,也就是说这里的U是不唯一的

而对于一个实对称矩阵,它的属于不同特征值的特征向量天生就是正交的,这使得我们只要在每个特征值内部选取合适的互相正交的特征向量,就能保证所有的特征向量都正交。而我们刚刚说过,特征向量乘以一个系数,仍然还是特征向量。所以,对于实对称矩阵来说,我们完全可以在诸多的U中选出一个特殊的Q,让Q的每一个列向量都互相正交而且长度为1。这时我们就惊喜的发现,这样的相当于由一组标准正交基当做列向量组成的矩阵Q,正是一个正交矩阵

于是,我们就清楚的知道了,对实对称矩阵对角化的时候,正交单位化不是必须的,只有当我们想在实对称矩阵的诸多U里选取一个正交矩阵Q时,才需要做。正交矩阵有很多很好的性质,于是乎想从U里找到一个Q也变得情有可原了不是?


实对称矩阵是对称于其主对角线的矩阵,即A = A^T,其中A^T表示矩阵A的转置。这样的矩阵总是可以对角化的,意味着存在一个正交矩阵P,使得P^TAP是一个对角矩阵D,即: \[ P^TAP = D \] 在这个对角矩阵D上,对角线元素就是原矩阵A的特征值,非对角线元素为0。在C语言中,对实对称矩阵进行对角化的一般步骤包括: 1. **计算特征值**:通过求解特征方程 |A - λI| = 0,其中λ是特征值,I是单位矩阵,找到矩阵A的所有特征值。 2. **计算特征向量**:对于每个特征值λ,找到对应的线性无关的特征向量v。因为实对称矩阵的特征向量是正交的,我们可以使用如Householder反射或Gram-Schmidt过程来确保它们满足这个条件。 3. **构造对角矩阵D**:将特征值放在对角线上形成对角矩阵。 4. **构建相似变换矩阵P**:特征向量构成矩阵P的列,每一列对应一个特征向量。 5. **对角化**:将矩阵A左乘以P的逆矩阵得到对角矩阵D,即\( A = PD^{-1}P^T \)。 ```c // 示例代码片段 #include <stdio.h> #include <math.h> void eigendecomposition(double matrix[], double eigenvalues[], double eigenvectors[], int size) { // ... 实现特征值和向量的计算 ... // 计算P并存储特征向量 for (int i = 0; i < size; i++) { // ... 生成正交列向量 ... } // 构建对角矩阵D for (int i = 0; i < size; i++) { eigenvectors[i][i] = eigenvalues[i]; } // 对角化过程 for (int i = 0; i < size; i++) { for (int j = 0; j < size; j++) { matrix[i][j] = dot_product(eigenvectors[i], eigenvectors[j]); // 矩阵乘法 } } } double dot_product(double vector1[], double vector2[]) { // ... 实现两个向量的点积 ... } // 主函数调用示例 int main() { double a[size][size], d[size], p[size][size]; // 初始矩阵... eigendecomposition(a, d, p, size); return 0; } ```
评论 41
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值