现在我们开始实质性的计算,它非常简单并且在随后的几篇文章里都会用到。特征向量对角化一个矩阵:
3、假设
n×n
矩阵有
n
个线性无关的特征向量,如果这些向量是矩阵
我们将
S
称作特征向量矩阵,
证明:将特征向量
xi
放在
S
的列上,按列计算
然后技巧就是将最后一个矩阵分成两个矩阵的乘积
SΛ
:
这里关键的一点是矩阵要写在右侧,如果
Λ
写在
S
前面,那么
其中 S 是可逆的,因为假设它的列(特征向量)是无关的。
在给出实例和应用之前,我们给出四点说明。
注解1:如果矩阵
注解2:对角化矩阵
注解3:其他矩阵
注解4:并非所有的矩阵都有
n
个线性无关的特征向量,所以并非所有的矩阵都可以对角化。考虑病态矩阵的一个标准例子
特的特征值是
λ1=λ2=0
,因为它是三角矩阵,并且对角元素为零:
A
的所有特征向量是向量
λ=0 是二重特征值——它的代数重数是2,但是几何重数是1——只有一个无关的特征向量,所以我们不能构建 S 。
对于
无法对角化的原因不是因为
λ=0
,而是
λ1=λ2
:
他们的特征值是3,3和1,1,但是是奇异的!问题在于特征向量不完备,这里再强调一下:
A
的对角化依赖于充分的特征向量。
对角化和逆没有联系,由特征值给出的唯一信息是:只有在特征值重复的时候,对角化才会失败。但是不总是会失败, A=I 的特征值就是重复的1,1, … ,1,但是它已经是对角矩阵!这时候特征向量是完备的。
在特征值出现
p
次重复的时候,需要检验是否有
4、如果特征向量 x1,…,xk 对应不同的特征值 λ1,…,λk ,那么这些特征向量就是线性无关的。
首先假设
k=2
,并且
x1,x2
的组合是零:
c1x1+c2x2=0
,用
A
进行相乘,可以得到
因为 λ1≠λ2 并且 x1≠0 ,我们得出 c1=0 ,同样我们可以得到 c2=0 ,所以两个向量是无关的;因为只有平凡组合才能得出零。
这个论证可以扩展到任意个特征向量的情况:如果某个组合产生零,那么用
A
去乘然后减去原组合的
有 n 个不同特征值的矩阵可以被对角化,下面给出一个典型的例子。
对角化实例
这部分主要是
例1:投影矩阵
特征值矩阵为
将特征向量放入
S
的列中得:
因此 S−1AS=Λ 。
例2:对于旋转而言,特征值不是很明显:
可以得出 det(K−λI)=λ2+1 。一个向量旋转后怎样才会保持方向不变呢?很显然,除了零向量外(然而它是没用的)不可能有向量如此,但是必须由特征值,我们必须求解 du/dt=Ku ,特征多项式 λ2+1 依然有两个根—— 但是这些根不是实值而已。
基于上面的提示,我们找到了出路,
K
的特征值是虚数,
即便特征值是虚数,但他们是不同的并且特征值是无关的。将他们放到
S
中:
我们面临着一个不可避免的事实,即使是实数矩阵,依然需要复数。如果实特征值很少,那么总是存在
n
个复特征值。(当虚部为零时,复数包括实数)如果
幂和乘 : Ak,AB
这里将解一个计算比较简单的情况。
A2
的特征值是
λ21,…,λ2n
,并且
A
的特征向量也是
因此
λ2
是
A2
的特征值,并且有相同的特征向量
x
。如果第一次乘以
利用对角化可以得到相同的结论,将
矩阵
A2
被相同的
S
对角化,所以特征向量不变。特征值是原来的进行平方,这个结论对任意
5、
Ak
的特征值是
λk1,…,λkn
并且
A
的每个特征向量依然是
除了第一个
S−1
和最后一个
S
外,每一个
如果
例3:如果
K
表示旋转
K
的特征值是
对于两个矩阵的乘积,我们可能希望它与
AB
的特征值有关—— 但是事与愿违,尝试用同样的推理似乎非常诱人,可是一般情况下这不是真的。如果
λ
是
A
的特征值,
错误的原因在于认为
A,B
有相同的特征向量
x
,一般情况下,他们是不相等的,这里我们给出两个特征值为0的矩阵:
A,B 的特征向量完全不同。同理, A+B 的特征值和 λ+μ 也没有关系。
上面错误的表明了哪些是对的,如果 A,B 的特征向量一样,那么特征值就是他们的乘积 μλ 。但是还有更重要的,这提供了一种识别 A,B 是否共享同一特征向量集合的方法,这在量子力学中是非常关键的问题。
6、当且仅当 AB=BA 时,对角化矩阵有相同的特征向量矩阵 S 。
证明:如果同样的
因为 Λ1Λ2=Λ2Λ1 (对角矩阵满足交换律),所以我们有 AB=BA 。
反过来,假设
AB=BA
,从
Ax=λx
开始,我们有
所以
x,Bx
都是
A
的特征向量,他们共享
海森伯格不确定性原则来非交换矩阵,像位置
P
和动量
∥Qx∥/∥x∥
与
∥Px∥/∥x∥
的乘积——动量和位置误差(当波函数是
x
时)——最小是
最后我们回到
A=SΛS−1
,这个分解非常适合取
A
的幂,我们用最简单的例子