漫步线性代数二十七——矩阵对角化

现在我们开始实质性的计算,它非常简单并且在随后的几篇文章里都会用到。特征向量对角化一个矩阵:

3、假设 n×n 矩阵有 n 个线性无关的特征向量,如果这些向量是矩阵S的列,那么 S1AS 是一个对角矩阵 Λ A 的特征值在Λ的对角线上:

S1AS=Λ=λ1λ2λn(1)

我们将 S 称作特征向量矩阵,Λ是特征值矩阵——这里使用大写的表示,因为小写的表示对角线上的特征值。

证明:将特征向量 xi 放在 S 的列上,按列计算AS的:

AS=A|x1||x2||xn||λ1x1||λ2x2||λnxn|

然后技巧就是将最后一个矩阵分成两个矩阵的乘积 SΛ

λ1x1λ2x2λnxn=x1x2xnλ1λ2λn

这里关键的一点是矩阵要写在右侧,如果 Λ 写在 S 前面,那么λ1将和第一行进行乘积,但我们想 λ1 出现在第一列,鉴于此, SΛ 是正确的,所以

AS=SΛ,orS1AS=Λ,orA=SΛS1(2)

其中 S 是可逆的,因为假设它的列(特征向量)是无关的。

在给出实例和应用之前,我们给出四点说明。

注解1:如果矩阵A没有虫多特征值- λ1,,λn 是不同的,那么它的 n 个特征值自然是无关的,因此任何特征值不同的矩阵可以被对角化。

注解2:对角化矩阵S不是唯一的。因为特征向量 x 乘以一个常数后依然是特征向量,于是用任何非零常数乘以S的列的到一个新的对角化矩阵 S ,多重特征值有更大的自由度。对于平凡的例子A=I,任何可逆矩阵 S 都能是S1IS是对角矩阵( λ 就是 I ),所有向量就是单位矩阵的特征向量。

注解3:其他矩阵S不会得出对角矩阵 Λ 。假设 S 的第一列是y,那么 SΛ 的第一列是 λ1y ,如果它和 AS 的第一列相同,根据矩阵乘法它的第一列是 Ay ,那么 y 一定是特征向量,Ay=λ1y S 中特征向量的顺序和Λ中特征值的顺序自然是一样的。

注解4:并非所有的矩阵都有 n 个线性无关的特征向量,所以并非所有的矩阵都可以对角化。考虑病态矩阵的一个标准例子

A=[0010]

特的特征值是 λ1=λ2=0 ,因为它是三角矩阵,并且对角元素为零:

det(AλI)=det[λ01λ]=λ2

A 的所有特征向量是向量(1,0)的倍数:

[0010]x=[00],orx=[c0]

λ=0 是二重特征值——它的代数重数是2,但是几何重数是1——只有一个无关的特征向量,所以我们不能构建 S

对于A不能对角化,这里还有一个更直接的证明。因为 λ1=λ2=0 Λ 肯定是一个零矩阵,但是如果 S1AS=0 ,那么我们左乘 S ,右乘S1,便得到 A=0 。但是 A 不等于0,所以S不可逆。

无法对角化的原因不是因为 λ=0 ,而是 λ1=λ2

A=[3013]andA=[2110]

他们的特征值是3,3和1,1,但是是奇异的!问题在于特征向量不完备,这里再强调一下:

A 的对角化依赖于充分的特征向量。
A的逆依赖于非零特征值。

对角化和逆没有联系,由特征值给出的唯一信息是:只有在特征值重复的时候,对角化才会失败。但是不总是会失败, A=I 的特征值就是重复的1,1, ,1,但是它已经是对角矩阵!这时候特征向量是完备的。

在特征值出现 p 次重复的时候,需要检验是否有p个无关的特征向量——也就是说,检验 AλI 的秩为 np ,为了完成所有的想法,我们必须说明特征值不同的情况。

4、如果特征向量 x1,,xk 对应不同的特征值 λ1,,λk ,那么这些特征向量就是线性无关的。

首先假设 k=2 ,并且 x1,x2 的组合是零: c1x1+c2x2=0 ,用 A 进行相乘,可以得到c1λ1x1+c2λ2x2=0,用此方程减去前面方程的 λ2 倍,可以消去向量 x2

c1(λ1λ2)x1=0

因为 λ1λ2 并且 x10 ,我们得出 c1=0 ,同样我们可以得到 c2=0 ,所以两个向量是无关的;因为只有平凡组合才能得出零。

这个论证可以扩展到任意个特征向量的情况:如果某个组合产生零,那么用 A 去乘然后减去原组合的λk倍, xk 消失了,只留下 x1,,xk1 为零的组合。重复相同的步骤(这就是数学归纳法),最终我们会得到 x1 的倍数等于零,所以 c1=0 ,从而每个 ci=0 ,于是来自不同特征值的特征向量自然线性无关。

n 个不同特征值的矩阵可以被对角化,下面给出一个典型的例子。

对角化实例

这部分主要是S1AS=A,特征向量矩阵 S A变成特征值矩阵 Λ (对角的),现在我们来看一下投影和旋转矩阵。

例1:投影矩阵

12121212

特征值矩阵为

Λ=[1000]

将特征向量放入 S 的列中得:

S=[1111]andAS=SΛ=[1100]

因此 S1AS=Λ

例2:对于旋转而言,特征值不是很明显:

90K=[0110]

可以得出 det(KλI)=λ2+1 。一个向量旋转后怎样才会保持方向不变呢?很显然,除了零向量外(然而它是没用的)不可能有向量如此,但是必须由特征值,我们必须求解 du/dt=Ku ,特征多项式 λ2+1 依然有两个根—— 但是这些根不是实值而已。

基于上面的提示,我们找到了出路, K 的特征值是虚数,λ1=i,λ2=i,从而看出特征值可以是非实的。这似乎很神奇,旋转九十度后他们乘以 i 或者i

(Kλ1I)x1=[i11i][yz]=[00]andx1=[1i](Kλ2I)x2=[i11i][yz]=[00]andx1=[1i]

即便特征值是虚数,但他们是不同的并且特征值是无关的。将他们放到 S 中:

S=[1i1i]andS1KS=[i00i]

我们面临着一个不可避免的事实,即使是实数矩阵,依然需要复数。如果实特征值很少,那么总是存在 n 个复特征值。(当虚部为零时,复数包括实数)如果R3,Rn中实特征向量很少时,我们就考虑 C3,Cn Cn 空间包含有复元素的所有列向量并且长度,内积与正交有新的定义,但是确比 Rn 简单。

幂和乘 : Ak,AB

这里将解一个计算比较简单的情况。 A2 的特征值是 λ21,,λ2n ,并且 A 的特征向量也是A2的特征向量,我们先从 Ax=λx 开始,然后乘以 A

A2x=Aλx=λAx=λ2x(3)

因此 λ2 A2 的特征值,并且有相同的特征向量 x 。如果第一次乘以A后留下的 x 方向未变,那么第二次同样如此。

利用对角化可以得到相同的结论,将S1AS=Λ平方:

(S1AS)(S1AS)=Λ2orS1A2S=Λ2

矩阵 A2 被相同的 S 对角化,所以特征向量不变。特征值是原来的进行平方,这个结论对任意A的幂次都成立:

5、 Ak 的特征值是 λk1,,λkn 并且 A 的每个特征向量依然是Ak的特征向量。当 S 对角化A时,它也对角化 Ak

λk=(S1AS)(S1AS)(S1AS)=S1AkS(4)

除了第一个 S1 和最后一个 S 外,每一个S1都消掉一个 S

如果A是可逆的,这个规则也可以应用到它的逆上(幂 k=1 ), A1 的特征值是 1/λi ,这个结果即使未对角化也能看出来:

Ax=λxx=λA1x1λx=A1x

例3:如果 K 表示旋转90,那么 K2 表示旋转 180 (也就是 I )并且 K1 表示旋转 90

K=[0110],K2=[1001],K1=[0110]

K 的特征值是i,i;他们的平方是-1和-1;他们的倒数是 1/i=i,1/(i)=i ,那么 K4 就是旋转 360 :

K4=[1001],Λ4=[i400(i)4]=[1001]

对于两个矩阵的乘积,我们可能希望它与 AB 的特征值有关—— 但是事与愿违,尝试用同样的推理似乎非常诱人,可是一般情况下这不是真的。如果 λ A 的特征值,μ B 的特征值,这里给出一个AB等于 μλ 的错误证明:

ABx=Aμx=μAx=μλx

错误的原因在于认为 A,B 有相同的特征向量 x ,一般情况下,他们是不相等的,这里我们给出两个特征值为0的矩阵:

AB=[0010][0100]=[1000]

A,B 的特征向量完全不同。同理, A+B 的特征值和 λ+μ 也没有关系。

上面错误的表明了哪些是对的,如果 A,B 的特征向量一样,那么特征值就是他们的乘积 μλ 。但是还有更重要的,这提供了一种识别 A,B 是否共享同一特征向量集合的方法,这在量子力学中是非常关键的问题。

6、当且仅当 AB=BA 时,对角化矩阵有相同的特征向量矩阵 S

证明:如果同样的S对角化得 A=SΛ1S1,B=SΛ2S1 ,那么我们用两种顺序相乘得:

AB=SΛ1S1SΛ2S1=SΛ1Λ2S1, BA=SΛ2S1SΛ1S1=SΛ2Λ1S1

因为 Λ1Λ2=Λ2Λ1 (对角矩阵满足交换律),所以我们有 AB=BA

反过来,假设 AB=BA ,从 Ax=λx 开始,我们有

ABx=BAx=Bλx=λBx

所以 x,Bx 都是 A 的特征向量,他们共享λ。为了方便如果我们假设 A 的特征值是不同的——特征空间总是一维的——那么Bx肯定是 x 的倍数,换句或说x B,A 的特征向量。对于有相同特征值得证明有点长,这里从略。

海森伯格不确定性原则来非交换矩阵,像位置 P 和动量Q。 位置是对称的,动量是斜对称的并且他们都满足 QPPQ=I ,不确定性原则直接来此施瓦兹不等式 (Qx)T(Px)QxPx :

x2=xTx=xT(QPPQ)x2QxPx

Qx/x Px/x 的乘积——动量和位置误差(当波函数是 x 时)——最小是12,我们无法让两者误差都变小,因为当我们试着度量粒子的位置时我们已经改变了它的动量。

最后我们回到 A=SΛS1 ,这个分解非常适合取 A 的幂,我们用最简单的例子A2进行说明,在平方的情况下 LU 分解完全没办法,但是 SΛS1 确非常完美,它的平方是 SΛ2S1 并且特征向量不变。利用这些特征向量,我们将解决微分方程与差分方程。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值