机器学习数学基础

机器学习1 机器学习数学基础

1. 概率统计

(1)常见的概率分布

a. 伯努利分布:0-1分布

P ( X = 1 ) = p , P ( X = 0 ) = 1 − p P(X=1)=p, P(X=0)=1-p P(X=1)=p,P(X=0)=1p.

b. 二项分布:n次伯努利分布,各次实验之间独立

P ( X = k ) = C n k p k ( 1 − p ) n − k P(X = k) = C_n^kp^k(1-p)^{n-k} P(X=k)=Cnkpk(1p)nk
  k次试验,每次试验事件发生概率为 p p p,不发生概率为 1 − p 1-p 1p

c. 均匀分布

  在给定区间[a, b]内分布概率是等可能的,参数为a、b,概率密度函数为 p ( x ) = 1 b − a , a < x < b p(x) = \frac{1}{b-a}, \quad a < x <b p(x)=ba1,a<x<b
在这里插入图片描述

d. 高斯分布(正态)

  由均值μ和标准差σ决定其分布,概率密度函数为: p ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 p(x) = \frac{1}{\sqrt{2 \pi}\sigma}e^{-\frac{(x-\mu)^2}{2 \sigma^2}} p(x)=2π σ1e2σ2(xμ)2

e. 指数分布

  常用来表示独立随机事件发生的时间间隔,参数为λ>0的指数分布概率密度函数为: p ( x ) = λ e − λ x x ≥ 0 p(x) = \lambda e^{-\lambda x} \quad x \geq 0 p(x)=λeλxx0
指数分布重要特征是无记忆性

(2)多变量概率分布

  条件概率:事件X在事件Y发生的条件下发生的概率,P(X|Y)
  联合概率:表示两个事件X和Y共同发生的概率,P(X,Y)
  条件概率和联合概率的性质: P ( Y ∣ X ) = P ( Y , X ) P ( X ) P ( X ) > 0 P(Y|X) = \frac{P(Y,X)}{P(X)} \quad P(X ) > 0 P(YX)=P(X)P(Y,X)P(X)>0.
  推广到 n 个事件,条件概率的链式法则: P ( X 1 , X 2 , … , X n ) = P ( X 1 ∣ X 2 , … , X n ) P ( X 2 ∣ X 3 , X 4 , … , X n ) … P ( X n − 1 ∣ X n ) P ( X n )   = P ( X n ) ∏ i = 1 n − 1 P ( X i ∣ X i + 1 , … , X n ) \begin{aligned} P\left(X_{1}, X_{2}, \ldots, X_{n}\right) &=P\left(X_{1} \mid X_{2}, \ldots, X_{n}\right) P\left(X_{2} \mid X_{3}, X_{4}, \ldots, X_{n}\right) \ldots P\left(X_{n-1} \mid X_{n}\right) P\left(X_{n}\right) \ &=P\left(X_{n}\right) \prod_{i=1}^{n-1} P\left(X_{i} \mid X_{i+1}, \ldots, X_{n}\right) \end{aligned} P(X1,X2,,Xn)=P(X1X2,,Xn)P(X2X3,X4,,Xn)P(Xn1Xn)P(Xn) =P(Xn)i=1n1P(XiXi+1,,Xn)
  先验概率(Prior probability):根据以往经验和分析得到的概率,在事件发生前已知,它往往作为“由因求果”问题中的“因”出现。

  后验概率(Posterior probability):指得到“结果”的信息后重新修正的概率,是“执果寻因”问题中 的“因”,后验概率是基于新的信息,修正后来的先验概率所获得的更接近实际情况的概率估计。

(3)全概率公式与贝叶斯公式

  全概率公式:设事件 A i {A_i} Ai是样本空间 Ω Ω Ω 的一个划分,且 P ( A i ) > 0 ( i = 1 , 2 , . . . , n ) P(A_i)>0(i=1,2,...,n) P(Ai)>0(i=1,2,...,n),那么: P ( B ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P(B) = \sum_{i = 1}^nP(A_i)P(B|A_i) P(B)=i=1nP(Ai)P(BAi).

  贝叶斯公式:全概率公式给我们提供了计算后验概率的途径,即贝叶斯公式 P (   A i ∣ B ) = P (   B ∣ A i ) P (   A i ) P (   B ) = P (   B ∣ A i ) P (   A i ) ∑ j = 1 n P (   A j ) P (   B ∣ A j ) P\left(\mathrm{~A}{i} \mid \mathrm{B}\right)=\frac{P\left(\mathrm{~B} \mid \mathrm{A}{i}\right) P\left(\mathrm{~A}{i}\right)}{P(\mathrm{~B})}=\frac{P\left(\mathrm{~B} \mid \mathrm{A}{i}\right) P\left(\mathrm{~A}{i}\right)}{\sum{j=1}^{n} P\left(\mathrm{~A}{j}\right) P\left(\mathrm{~B} \mid \mathrm{A}{j}\right)} P( AiB)=P( B)P( BAi)P( Ai)=j=1nP( Aj)P( BAj)P( BAi)P( Ai)

(4)方差与协方差

  方差:衡量随机变量与数学期望之间的偏离程度。统计中的方差则为样本方差,是各个样本数据分别与其平均数之差的平方和的平均数 :
V a r ( X ) = E { [ x − E ( x ) ] 2 } = E ( x 2 ) − [ E ( x ) ] 2 Var\left( X \right) =E\left\{ \left[ x-E\left( x \right) \right] ^2 \right\} =E\left( x^2 \right) -\left[ E\left( x \right) \right] ^2 Var(X)=E{[xE(x)]2}=E(x2)[E(x)]2

  协方差:衡量两个随机变量X和Y直接的总体误差:
C o v ( X , Y ) = E { [ x − E ( x ) ] [ y − E ( y ) ] } = E ( x y ) − E ( x ) E ( y ) Cov\left( X,Y \right) =E\left\{ \left[ x-E\left( x \right) \right] \left[ y-E\left( y \right) \right] \right\} =E\left( xy \right) -E\left( x \right) E\left( y \right) Cov(X,Y)=E{[xE(x)][yE(y)]}=E(xy)E(x)E(y)

2. 矩阵

(1)矩阵基础

a. 矩阵

  二维数组,其中每一个元素一般由两个索引来确定一般用大写变量表示,m行n列的实数矩阵,记做 A ∈ R m × n A \in R_{m \times n} ARm×n

b. 张量

在这里插入图片描述

c. 矩阵的秩(Rank)

  矩阵列向量中的极大线性无关组的数目,记作矩阵的列秩,同样可以定义行秩。行秩=列秩=矩阵的秩,通常记作rank(A)。

d. 矩阵的逆

  若矩阵A为方阵,当 r a n k ( A n × n ) < n rank(A_{n×n})<n rank(An×n)<n时,称A为奇异矩阵或不可逆矩阵;
  若矩阵A为方阵,当 r a n k ( A n × n ) = n rank(A_{n×n})=n rank(An×n)=n时,称A为非奇异矩阵或可逆矩阵,其逆矩阵 A − 1 A^{-1} A1 满足以下条件,则称 A − 1 A^{-1} A1 为矩阵A的逆矩阵: A A − 1 = A − 1 A = I n AA^{-1} = A^{-1}A = I_n AA1=A1A=In 其中 I n I_n In n × n n×n n×n 的单位阵。

e. 矩阵的广义逆矩阵

  如果矩阵不为方阵或者是奇异矩阵,不存在逆矩阵,但是可以计算其广义逆矩阵或者伪逆矩阵;对于矩阵A,如果存在矩阵 B B B 使得 A B A = A ABA=A ABA=A,则称 B B B A A A 的广义逆矩阵。

f. 矩阵的特征值、特征向量、迹、行列式

  若矩阵 A A A 为方阵,则存在非零向量 x x x 和常数 λ \lambda λ 满足 A x = λ x Ax=\lambda x Ax=λx,则称 $ \lambda$ 为矩阵 $ A$ 的一个特征值, x x x 为矩阵 A A A 关于 λ \lambda λ 的特征向量。
   A n × n A_{n \times n} An×n 的矩阵具有 n n n 个特征值, λ 1 ≤ λ 2 ≤ ⋯ ≤ λ n λ_1 ≤ λ_2 ≤ ⋯ ≤ λ_n λ1λ2λn 其对应的n个特征向量为 𝒖 1 , 𝒖 2 , ⋯ , 𝒖 𝑛 𝒖_1,𝒖_2, ⋯ ,𝒖_𝑛 u1u2un
  矩阵的迹(trace)和行列式(determinant)的值分别为
tr ⁡ ( A ) = ∑ i = 1 n λ i ∣   A ∣ = ∏ i = 1 n λ i \operatorname{tr}(\mathrm{A})=\sum_{i=1}^{n} \lambda_{i} \quad|\mathrm{~A}|=\prod_{i=1}^{n} \lambda_{i} tr(A)=i=1nλi A=i=1nλi

(2)矩阵分解

a. 矩阵特征值分解

   A n × n A_{n \times n} An×n 的矩阵具有 n n n 个不同的特征值,那么矩阵A可以分解为 A = U Σ U T A = U\Sigma U^{T} A=UΣUT.
其中 ∑ = [ λ 1 0 . . . 0 0 λ 2 . . . 0 0 0 . . . 0 0 0 . . . λ n ] , \sum{=\left[ \begin{matrix} \lambda _1& 0& ...& 0\\ 0& \lambda _2& ...& 0\\ 0& 0& ...& 0\\ 0& 0& ...& \lambda _n\\ \end{matrix} \right]}, =λ10000λ200............000λn,
U = [ u 1 , u 2 , . . . , u n ] , U=\left[ u_1,u_2,...,u_n \right] , U=[u1,u2,...,un],
∥ u i ∥ 2 = 1 \lVert u_i \rVert _2=1 ui2=1

b. 矩阵奇异值分解

  对于任意矩阵 A m × n A_{m \times n} Am×n,存在正交矩阵 U m × m U_{m \times m} Um×m V n × n V_{n \times n} Vn×n,使其满足 A = U Σ V T U T U = V T V = I A = U \Sigma V^{T} \quad U^T U = V^T V = I A=UΣVTUTU=VTV=I,则称上式为矩阵 A A A 的特征分解。
在这里插入图片描述

3. 信息论

(1)基础知识

a. 熵(Entropy)

  信息熵,可以看作是样本集合纯度一种指标,也可以认为是样本集合包含的平均信息量。假定当前样本集合X中第i类样本 𝑥 𝑖 𝑥_𝑖 xi 所占的比例为 P ( 𝑥 𝑖 ) ( i = 1 , 2 , . . . , n ) P(𝑥_𝑖)(i=1,2,...,n) P(xi)(i=1,2,...,n),则X的信息熵定义为: H ( X ) = − ∑ i = 1 n P ( x i ) log ⁡ 2 P ( x i ) , H(X) = -\sum_{i = 1}^n P(x_i)\log_2P(x_i) , H(X)=i=1nP(xi)log2P(xi), H(X)的值越小,则X的纯度越高,蕴含的不确定性越少

b. 联合熵

  两个随机变量X和Y的联合分布可以形成联合熵,度量二维随机变量XY的不确定性: H ( X , Y ) = − ∑ i = 1 n ∑ j = 1 n P ( x i , y j ) log ⁡ 2 P ( x i , y j ) H(X, Y) = -\sum_{i = 1}^n \sum_{j = 1}^n P(x_i,y_j)\log_2 P(x_i,y_j) H(X,Y)=i=1nj=1nP(xi,yj)log2P(xi,yj)

c. 条件熵

  在随机变量X发生的前提下,随机变量Y发生带来的熵,定义为Y的条件熵,用H(Y|X)表示,定义为: KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ H(Y|X) &= \sum… 条件熵用来衡量在已知随机变量X的条件下,随机变量Y的不确定。 熵、联合熵和条件熵之间的关系: H ( Y ∣ X ) = H ( X , Y ) − H ( X ) H(Y|X) = H(X,Y)-H(X) H(YX)=H(X,Y)H(X)

d. 互信息

I ( X ; Y ) = H ( X ) + H ( Y ) − H ( X , Y ) I(X;Y) = H(X)+H(Y)-H(X,Y) I(X;Y)=H(X)+H(Y)H(X,Y)

e. 相对熵

  相对熵又称KL散度,是描述两个概率分布P和Q差异的一种方法,记做D(P||Q)。在信息论中,D(P||Q)表示用概率分布Q来拟合真实分布P时,产生的信息表达的损耗,其中P表示信源的真实分布,Q表示P的近似分布。
  离散形式: D ( P ∣ ∣ Q ) = ∑ P ( x ) log ⁡ P ( x ) Q ( x ) D(P||Q) = \sum P(x)\log \frac{P(x)}{Q(x)} D(PQ)=P(x)logQ(x)P(x).
  连续形式: D ( P ∣ ∣ Q ) = ∫ P ( x ) log ⁡ P ( x ) Q ( x ) D(P||Q) = \int P(x)\log \frac{P(x)}{Q(x)} D(PQ)=P(x)logQ(x)P(x).

f. 交叉熵

  一般用来求目标与预测值之间的差距,深度学习中经常用到的一类损失函数度量,比如在对抗生成网络( GAN )中
D ( P ∣ ∣ Q ) = ∑ P ( x ) log ⁡ P ( x ) Q ( x )    = ∑ P ( x ) log ⁡ P ( x ) − ∑ P ( x ) log ⁡ Q ( x )    = − H ( P ( x ) ) − ∑ P ( x ) log ⁡ Q ( x ) \begin{aligned} D\left( P||Q \right) &=\sum{P}\left( x \right) \log \frac{P\left( x \right)}{Q\left( x \right)}\,\,=\sum{P}\left( x \right) \log P\left( x \right) -\sum{P}\left( x \right) \log Q\left( x \right) \,\,=-H\left( P\left( x \right) \right) -\sum{P}\left( x \right) \log Q\left( x \right)\\ \end{aligned} D(PQ)=P(x)logQ(x)P(x)=P(x)logP(x)P(x)logQ(x)=H(P(x))P(x)logQ(x)

交叉熵: H ( P , Q ) = − ∑ P ( x ) log ⁡ Q ( x ) H(P,Q) = -\sum P(x)\log Q(x) H(P,Q)=P(x)logQ(x).

参考:
1. DataWhale组队学习-机器学习基础

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值