本文将推导弧长积分公式。
对于函数,在区间
上连续可导。那么求该函数在该区间上的弧的长度。
则弧长的微元
则在区间上,弧长
(弧长公式)
针对于积分的定义,可以使用牛顿.莱布尼茨公式对其进行求解。
【求圆的周长举例】
圆的半径设为,圆的公式为
,划为
的形式为
,此处y取正值,先求在第一象限内的四分之一圆。
由于弧长公式中有个,我们先把
求出来:
则
将其带入弧长公式,在第一象限的
则
同时,针对也可以将dx与dy使用参数式方程划为 t 的函数。具体参考:【数学】积分法推导求圆的周长、弧度