Falcon 40B——全球排名第一的AI模型现在已免费授权

前言

随着阿布扎比进入竞技场,机器人大战正在升温,最近宣布了自己的大型语言模型Falcon,以与 OpenAI、DeepMind 和谷歌等公司竞争。

在斯坦福大学的外部性能评估中,Falcon 比 GPT-3 以及 DeepMind 和谷歌的模型更便宜、运行速度更快。

image.png

阿布扎比 - 阿拉伯联合酋长国:2023 年 5 月 31 日- 技术创新研究所 (TII) 的 Falcon 40B 是阿联酋领先的大型开源人工智能模型,现免收商业和研究使用的版税费用,以响应全球对人工智能包容性地访问的需求。

在Hugging Face的大型语言模型排行榜上排名全球第一的Falcon 40B,胜过了Meta的LLaMA和Stability AI的StableLM等竞争对手。根据宽松的Apache 2.0软件许可证,Falcon 40B最终用户可以访问该软件涉及的任何专利。Apache 2.0确保了安全和可用性,并建立了一个有效的治理模型,为强大的开源软件提供支持。

image.png

 Falcon 40B 的排名,请访问:https://huggingface.co/spaces/HuggingFaceH4/openllmleaderboard

TII 不受限制地使用 Falcon 40B 凸显了其致力于技术创新和知识共享、培养协作生态系统并加强阿联酋作为全球 AI 领导者的地位。此外,它还反映了阿联酋致力于突破界限,塑造人工智能在推动积极变革中发挥关键作用的未来。

TII对Falcon 40B的无限制访问凸显了其对技术创新和知识共享的承诺,促进了协作生态系统的形成,增强了阿联酋作为全球人工智能领导者的地位。此外,这也反映了阿联酋致力于推动边界并塑造未来,在其中人工智能发挥重要作用以推动积极变革的承诺。

通过开源、免费部署Falcon 40B,公共和私营部门实体可以获得效率提升,例如更快的项目启动、更快的迭代、更灵活的软件开发流程、强大的社区驱动支持和更轻松的许可证管理等。

TII旨在在全球开发人员、研究人员和企业之间培育一个充满活力的协作、创新和知识共享生态系统。此举促进了透明性、包容性和人工智能领域加速进展,为其在各行业和领域的应用打开多样化机遇。

TII的AI跨中心部门主任Ebtesam Almazrouei博士表示:“取消Falcon 40B版税费用促进了一个凝聚社会的包容性技术发展。我们致力于利用技术使人类团结一致并未未来-proof我们的世界。”

二、Falcon 40B 介绍

Falcon LLM 是一种基础大型语言模型 (LLM),具有 400 亿个参数,在 1 万亿个令牌上进行了训练。TII 现已发布 Falcon LLM – 40B 型号。

该模型仅使用了 GPT-3 训练计算的 75%、Chinchilla 的 40% 和 PaLM-62B 的 80%。

image.png

三、Falcon LLM 是如何开发的?

Falcon 具备什么优势

  • Falcon 是使用自定义工具构建的,并利用独特的数据管道,可以从网络数据中提取高质量的内容,并将其用于训练自定义代码库,独立于 NVIDIA、Microsoft 或 HuggingFace 的作品。

  • 特别关注大规模数据质量。众所周知,LLM 对其训练数据的质量很敏感,因此在构建数据管道时格外小心,该管道既可以扩展到数万个 CPU 内核以进行快速处理,又可以使用广泛的网络从网络中提取高质量的内容。过滤和重复数据删除。

  • Falcon 的架构针对性能和效率进行了优化。将高质量数据与这些优化相结合,Falcon 仅在训练计算预算的 75% 上就明显优于 GPT-3,并且在推理时需要五分之一的计算。

  • Falcon 与 DeepMind、Google 和 Anthropic 的最先进 LLM 的性能相媲美。

Falcon 是如何训练的

  • Falcon 是一个 400 亿参数的自回归解码器模型,在 1 万亿个令牌上训练。在两个月的时间里,它在 AWS 上的 384 个 GPU 上进行了训练。

  • 预训练数据是从网络的公共抓取中收集的,以构建 Falcon 的预训练数据集。使用 CommonCrawl 的转储,经过大量过滤(以删除机器生成的文本和成人内容)和重复数据删除后,组装了近 5 万亿个标记的预训练数据集。

  • 为了扩展 Falcon 的能力,这个数据集随后被扩展到一些精选的来源,例如研究论文和来自社交媒体的对话。

  • 最后,Falcon 的性能根据 EAI Harness、HELM 和 BigBench 等开源基准进行了验证。

Falcon 的主要应用场景

  • 生成创意文本并解决复杂问题。

  • 用于聊天机器人、客户服务运营、虚拟助理、语言翻译、内容生成和情绪分析。

  • Falcon 预见了广泛的用例,尽管我们对减少和自动化“重复”工作的应用程序最为兴奋。

  • Falcon 将帮助阿联酋的公司和初创企业提高效率,简化内部流程,让员工有时间专注于重要的事情。

  • 在个人层面,嵌入 Falcon 的聊天机器人将能够在日常生活中为用户提供帮助。

四、快速体验Falcon AI

如果没有服务器条件,可以在免费的 Google Colab 上与 Falcon LLM 进行人工智能问答,访问以下地址:

https://colab.research.google.com/drive/1RAEkxDRRjWU6T8dV8grR1imrrHV4Idj2?usp=sharing#scrollTo=N6KzsIXEkAfP

如果你对这篇文章感兴趣,而且你想要了解更多关于AI领域的实战技巧,可以关注「技术狂潮AI」公众号。在这里,你可以看到最新最热的AIGC领域的干货文章和案例实战教程。image.png

<think>好的,我现在需要帮助用户寻找可以免费部署的AI模型。首先,我得理解用户的需求。他们提到“可免费部署的AI模型”,可能是指那些允许免费使用并且能够自行部署到本地或云端的模型。接下来,我需要回想一下常见的开源大模型,尤其是那些允许商业使用或免费部署的。 首先,Hugging Face平台有很多开源模型,比如Meta的LLaMA系列,但需要注意许可证。LLaMA 2是部分开源的,允许商用,但可能需要申请访问权限。然后是Falcon系列,比如Falcon-40B,Apache 2.0许可证,允许免费使用和修改,这对用户来说可能是个好选择。 接着,还有其他模型如Alpaca、Vicuna,这些是基于LLaMA微调的,但需要确认其许可证是否允许免费部署。还有EleutherAI的GPT-NeoX-20B,也是Apache 2.0,适合商用。另外,BLOOM也是一个多语言大模型,许可证比较宽松。 然后,用户可能需要一些工具或框架来部署这些模型。比如使用Hugging Face的Transformers库,或者结合FastAPI、Docker来构建API服务。量化技术如bitsandbytes可以帮助降低显存占用,这对资源有限的部署环境很重要。 另外,用户可能会关心部署的硬件要求。比如Falcon-40B需要较大的显存,可能需要多块GPU,而较小的模型如LLaMA-7B可以在单块消费级GPU上运行。需要提醒用户注意硬件兼容性和资源消耗。 还要考虑用户的技术水平。如果他们不熟悉深度学习框架,可能需要更详细的部署步骤,或者推荐一些现成的工具,比如Text Generation Inference(TGI)来简化部署流程。 最后,确保引用的资料正确,比如提到的Hugging Face资源、模型许可证以及相关技术文档。可能需要检查引用来源是否支持这些信息,比如引用[1]中的可解释推荐可能不相关,但引用[3]提到的ML/AI基础设施可能涉及部署工具,但需要确认是否适用。 总结下来,我需要列出几个主要的开源模型,说明它们的许可证、部署方式、硬件需求,并提供部署工具的建议,同时提醒注意事项如许可证合规和资源限制。这样用户就能根据自身情况选择合适的模型并进行部署。</think>### 可免费部署的AI模型推荐 以下是支持免费部署的开源大模型及相关工具,适用于本地或云端环境: --- #### 1. **Meta LLaMA 系列** - **模型**: LLaMA-7B/13B/70B(需申请访问权限) - **许可证**: 非商用或部分商用授权 - **特点**: 高性能生成能力,支持文本生成、对话等任务 - **部署工具**: - 使用`Hugging Face Transformers`库直接加载 - 结合`bitsandbytes`量化降低显存占用[^2] - 示例代码: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf") model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", load_in_8bit=True) ``` --- #### 2. **Falcon 系列** - **模型**: Falcon-7B/40B - **许可证**: Apache 2.0(完全免费商用) - **特点**: 多语言支持,推理效率高 - **部署方式**: - 通过`Hugging Face TGI`(Text Generation Inference)部署为API服务 - 使用Docker快速搭建: ```bash docker run -p 8080:80 -v falcon-40b:/models ghcr.io/huggingface/text-generation-inference:latest --model-id tiiuae/falcon-40b ``` --- #### 3. **BLOOM** - **模型**: BLOOM-7B/176B - **许可证**: Responsible AI License(需遵守伦理条款) - **特点**: 多语言训练数据,适合全球化场景 - **优化建议**: - 使用`DeepSpeed`加速推理 - 通过`gradio`构建交互式Web界面 --- #### 4. **Alpaca & Vicuna** - **模型**: 基于LLaMA微调的对话模型 - **许可证**: 需遵循LLaMA原版协议 - **部署工具**: - 使用`FastAPI`包装为RESTful API - 结合`LangChain`扩展应用场景[^1] --- #### 5. **GPT-J/GPT-NeoX** - **模型**: GPT-J-6B、GPT-NeoX-20B - **许可证**: Apache 2.0 - **资源需求**: - GPT-J-6B可在16GB显存的GPU运行 - 量化后(如4-bit)可部署至消费级显卡 --- ### 关键部署工具与技术 1. **量化压缩**: - `bitsandbytes`实现8/4-bit量化,显存降低50%-75% 2. **推理框架**: - `vLLM`: 高吞吐量推理,支持连续批处理 - `OpenLLM`: 集成模型管理与监控 3. **硬件适配**: - 云服务: 通过Hugging Face Inference Endpoints免费试用 - 本地部署: 使用NVIDIA T4/A10G等低成本GPU --- ### 注意事项 - **许可证合规性**: 部分模型(如LLaMA)需申请权限或限制商用场景 - **资源限制**: 大模型推理需较高算力,建议实测硬件性能 - **伦理风险**: 部署时需添加内容过滤模块,避免生成有害信息[^1] ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术狂潮AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值