英伟达、AMD、晟腾 的GPU都可以跑DeepSeek R1?

在运行 DeepSeek 等深度学习模型时,英伟达(NVIDIA)、AMD 和昇腾(华为 Ascend)的 GPU 在支持程度、性能表现和部署难度上存在显著差异。以下是三类 GPU 的详细对比及配置建议:


一、核心对比:生态支持与适用场景

维度 英伟达(NVIDIA) AMD 昇腾(Ascend)
计算架构 CUDA + cuDNN(闭源生态) ROCm(开源生态) CANN + 达芬奇架构(华为闭源生态)
框架支持 全面支持 PyTorch、TensorFlow、JAX 等主流框架 通过 ROCm 支持 PyTorch/TF,部分算子受限 需适配 MindSpore,PyTorch 需插件支持
模型兼容性 ⭐⭐⭐⭐⭐(DeepSeek 官方优先适配) ⭐⭐(需手动移植 CUDA 代码至 HIP) ⭐⭐(依赖华为工具链转换模型)
部署工具链 TensorRT、Triton、NCCL(多卡优化) ONNX Runtime、MIGraphX(有限优化) AscendCL、MindX(华为专用工具链)
典型硬件 A100/H100(数据中心)、RTX 4090(消费级) MI250/MI300(数据中心)、RX 7900(消费) Ascend 910(训练)、
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天机️灵韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值