快速入门 YOLOv5(ultralytics)

YOLOv5 是一系列在 COCO 数据集上预训练的对象检测架构和模型,代表Ultralytics 对未来视觉 AI 方法的开源研究,结合了在数千小时的研究和开发中获得的经验教训和最佳实践。

文档

有关训练、测试和部署的完整文档,请参阅YOLOv5 文档

快速入门示例

  • 安装

Python>=3.6.0需要安装所有 requirements.txt包括 PyTorch>=1.7:

$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt
  • 推理

推理可以直接从 PyTorch Hub 运行,而无需克隆存储库。必要的文件将下载到您的临时目录中。使用 YOLOv5 和PyTorch Hub 进行推理。模型会自动从latest YOLOv5 release下载。

import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # or yolov5m, yolov5l, yolov5x, custom

# Images
img = 'https://ultralytics.com/images/zidane.jpg'  # or file, Path, PIL, OpenCV, numpy, list

# Inference
results = model(img)

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.
  • 使用detect.py进行推理

detect.py在各种来源上运行推理,自动从最新的 YOLOv5 版本下载模型并将结果保存到runs/detect.

$ python detect.py --source 0   # webcam 
                            file.jpg   # image 
                            file.mp4   # video 
                            path/   # directory 
                            path/*.jpg   # glob 
                            'https://youtu.be/NUsoVlDFqZg'   # YouTube video 
                            'rtsp:/ /example.com/media.mp4'   # RTSP、RTMP、HTTP stream

将 OPTION 替换为您的选择,以检测:

  • 网络摄像头:(OPTION = 0)用于从您连接的网络摄像头检测活动物体
  • Image : (OPTION =filename.jpg)使用对象检测覆盖创建图像的副本
  • 视频: (OPTION = filename.mp4)使用对象检测覆盖创建视频副本
  • 目录:(OPTION = directory_name/)使用对象检测覆盖创建所有文件的副本
  • 全局文件类型(OPTION =directory_name/*.jpg)使用对象检测覆盖创建所有文件的副本
  • RTSP 流:(OPTION = rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa)用于从流中检测活动对象
    RTMP 流:(OPTION = rtmp://192.168.1.105/live/test)用于从流中检测活动对象
    HTTP流:(OPTION =
    http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8)用于从流中检测活动物体

目前支持以下文件格式:

  • 图片: bmp、jpg、jpeg、png、tif、tiff、dng、webp、mpo
  • 视频: mov、avi、mp4、mpg、mpeg、m4v、wmv、mkv
  • 训练

运行以下命令以在COCO数据集上重现结果(首次使用时自动下载数据集)。在单个 V100 上,YOLOv5s/m/l/x 的训练时间为 2/4/6/8 天(多 GPU 速度更快)。使用–batch-size您的 GPU 允许的最大尺寸(显示 16 GB 设备的批次大小)。

$ python train.py --data coco.yaml --cfg  yolov5s.yaml --weights ' ' --batch-size 64
											                                        yolov5m                                                           40
											                                        yolov5l 															24
											                                        yolov5x 															16

https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png

  • 教程

训练自定义数据
获得最佳训练效果的提示
权重和偏差记录
监督生态系统
多 GPU 训练
PyTorch 中心
TorchScript、ONNX、CoreML 导出
测试时间增加 (TTA)
模型集成
模型修剪/稀疏性
超参数演化
使用冻结层进行迁移学习
TensorRT 部署

为什么是 YOLOv5

在这里插入图片描述
YOLOv5-P5 640
在这里插入图片描述

  • GPU 速度使用批大小为 32 的 V100 GPU 测量每张图像的平均端到端时间超过 5000 张 COCO val2017 图像,包括图像预处理、PyTorch FP16 推理、后处理和 NMS。
  • 来自google/automl批量大小为 8 的EfficientDet 数据。
  • 重现通过 python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt
    在这里插入图片描述
你好!对于YOLOv5入门,我可以给你一些指导。 首先,YOLOv5是一个基于深度学习的物体检测模型,它可以用来识别图像或视频中的多个物体,并给出它们的位置和类别。 以下是一些入门步骤: 1. 安装所需的依赖:YOLOv5需要使用Python和一些常用的深度学习库,如PyTorch和OpenCV。确保你已经安装了这些软件包。 2. 下载YOLOv5的代码:你可以从YOLOv5的GitHub仓库(https://github.com/ultralytics/yolov5)下载源代码。 3. 准备数据集:你需要一个包含已标注物体边界框的数据集来训练YOLOv5模型。可以使用现有的开源数据集,或者自己创建一个。确保标注好每个物体的类别和位置信息。 4. 配置训练参数:在YOLOv5的代码中,你可以找到一个配置文件(`yolov5/models/yolov5s.yaml`),其中包含了训练和模型的参数。你可以根据自己的需求进行修改。 5. 训练模型:使用准备好的数据集和配置文件,运行训练脚本来开始训练模型。训练过程可能需要一些时间,取决于你的数据集大小和计算资源。 6. 测试和使用模型:训练完成后,你可以使用训练好的模型来对新的图像或视频进行物体检测。在YOLOv5代码中,有一个用于推理的脚本,你可以使用它来测试模型的性能。 这只是一个简单的入门指南,YOLOv5还有很多高级功能和优化方法可以探索。你可以参考官方文档和教程来深入学习。祝你成功入门YOLOv5!如果有更多问题,欢迎继续提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值