YOLOv11 完整安装教程:从环境配置到推理测试(2025最新版)
📢 前言
2024年9月30日,Ultralytics正式发布YOLOv11,这是YOLO系列在目标检测领域的最新突破。相较于前代模型,YOLOv11在以下方面实现显著提升:
- 模型架构优化:引入C3k2块、SPPF和C2PSA组件,强化特征提取能力
- 多任务支持:支持目标检测、实例分割、姿态估计、旋转边界框检测、图像分类五大任务
- 性能提升:YOLOv11x在COCO数据集上达到54.7% mAP,推理速度比YOLOv8快23%
- 跨平台部署:支持CPU/GPU推理,兼容ONNX、TensorRT等格式
本教程将详细讲解Windows/Linux双平台环境搭建,并提供常见问题解决方案。
🛠️ 环境要求
组件 | 最低要求 | 推荐配置 | 验证命令 |
---|---|---|---|
Python | 3.8+ | 3.10 | python --version |
PyTorch | 1.8+ | 2.4.1+ | python -c "import torch; print(torch.__version__)" |
CUDA | 11.7 | 11.8/12.1 | nvidia-smi |
cuDNN | 8.0.5 | 8.9.7 | cat /usr/local/cuda/include/cudnn_version.h |
显卡 | NVIDIA GTX 1060 | RTX 30/40系列 | - |
💡 关键提示:通过
conda list | grep cudatoolkit
验证CUDA版本,确保PyTorch与CUDA版本匹配
📥 安装步骤
步骤1:克隆官方仓库
git clone https://github.com/ultralytics/ultralytics
cd ultralytics
步骤2:创建虚拟环境(推荐)
使用conda
conda create -n yolov11 python=3.10
conda activate yolov11
步骤3:安装PyTorch
链接: pytorch官网
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124
步骤4:安装Ultralytics库
pip install ultralytics