【ultralytics Yolo 目标检测】安装教程

YOLOv11 完整安装教程:从环境配置到推理测试(2025最新版)

YOLOv11 Banner

📢 前言

2024年9月30日,Ultralytics正式发布YOLOv11,这是YOLO系列在目标检测领域的最新突破。相较于前代模型,YOLOv11在以下方面实现显著提升:

  • 模型架构优化:引入C3k2块、SPPF和C2PSA组件,强化特征提取能力
  • 多任务支持:支持目标检测、实例分割、姿态估计、旋转边界框检测、图像分类五大任务
  • 性能提升:YOLOv11x在COCO数据集上达到54.7% mAP,推理速度比YOLOv8快23%
  • 跨平台部署:支持CPU/GPU推理,兼容ONNX、TensorRT等格式

本教程将详细讲解Windows/Linux双平台环境搭建,并提供常见问题解决方案


🛠️ 环境要求

组件最低要求推荐配置验证命令
Python3.8+3.10python --version
PyTorch1.8+2.4.1+python -c "import torch; print(torch.__version__)"
CUDA11.711.8/12.1nvidia-smi
cuDNN8.0.58.9.7cat /usr/local/cuda/include/cudnn_version.h
显卡NVIDIA GTX 1060RTX 30/40系列-

💡 关键提示:通过conda list | grep cudatoolkit验证CUDA版本,确保PyTorch与CUDA版本匹配


📥 安装步骤

步骤1:克隆官方仓库

git clone https://github.com/ultralytics/ultralytics
cd ultralytics

步骤2:创建虚拟环境(推荐)

使用conda

conda create -n yolov11 python=3.10
conda activate yolov11

步骤3:安装PyTorch

链接: pytorch官网

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124

步骤4:安装Ultralytics库

pip install ultralytics
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值