多关系知识图谱表示学习

这篇博客探讨了异质知识图谱的研究焦点,即如何处理多关系知识图谱。RGCN(关系图卷积网络)作为一种消息传递框架,专门用于处理具有丰富关系数据的现实世界数据库。它通过为每种关系定义独立的参数矩阵来捕捉节点和关系信息,但在边数量增加时可能导致参数量增大。为解决这一问题,RGCN提出了正则化策略,如参数分解和块对角分解,以降低模型复杂性。该模型在链接预测和节点分类任务上表现出色。
摘要由CSDN通过智能技术生成

1.异质知识图谱研究的对象便是如何处理多关系知识图谱?
个人理解:多relation知识图谱中modeling在做node表征时需要充分考虑relation,也就是边对于实体表征的作用

2.如何合理充分结合node and relation信息提高表征能力?
**answer:**RGCN是一个messages-passing[消息传递]=框架
[R-GCN–Modeling Relation data with Graph Convolution networks]
RGCN是专门处理具有高度多关系数据特征的现实数据库而开发
是针对局部邻居信息进行聚合的GCN在大规模数据上的扩展
function:
RGCN[关系图卷积网络]:在链接预测和节点分类两个任务上都取得效果
solution:
1. RGCN将每一种边当成一个参数矩阵,进行学习,在边增多的时候,参数量也会越来越大
2. 存在参数巨大化,如何减低参数量,GRCN提出regularization规则化的方法:
regularization规则化:
1.对参数进行技术分解,2.对参数进行块对角分解

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>