一些矩阵相关计算的整理

1. 矩阵的内积

  • 两个矩阵的对应列的元素相乘并累加,最后得到一个1行n列的矩阵。
    在这里插入图片描述

2. 矩阵的叉乘

  • A矩阵的列数与B矩阵的行数相等,叉乘结果的第一个元素C11,为A矩阵的第一行元素逐个乘以B矩阵的第一列元素并相加所得,是我们最熟悉的矩阵乘法形式。

3. 矩阵的点乘

  • 要求相乘的A,B 矩阵行列数均相等,运算规则为每个对应位置上的数相乘即可

4. 矩阵的并矢

在这里插入图片描述

5. 矩阵的直积/张量积

在这里插入图片描述

6.

灰度共生矩阵(Grey Level Co-occurrence Matrix, GLCM)是一种用于图像处理中分析纹理特征的技术,它通过统计相邻像素在同一灰度级下的分布情况来衡量空间邻域内的灰度关联性。在Python中,我们可以使用`skimage.feature`模块中的`graycomatrix`函数来生成GLCM,并利用`scipy.stats`库来进行相关性计算。 以下是一个简单的示例代码: ```python from skimage import feature import numpy as np from scipy.stats import pearsonr # 假设你有一个8位灰度图像array named 'image' image = ... # 你的图像数据 # 定义邻域大小和方向(这里仅考虑4种基本方向) neighbors = [(0, -1), (0, 1), (-1, 0), (1, 0)] distance = 1 # 邻域的距离 # 计算GLCM glcm = feature.greycomatrix(image, distances=[distance], angles=neighbors) # 对角线对称化,因为离散余弦变换(DCT)通常只对对称的GLCM有良好响应 symmetrized_glcm = (glcm + glcm.T) / 2. # 对GLCM的每个灰度级求相关系数(例如,这里用皮尔逊相关系数) correlation_matrix = np.zeros_like(symmetrized_glcm) for i in range(256): correlation_matrix[i] = symmetrized_glcm[:, :, i] @ symmetrized_glcm[:, :, i] # 获取特定角度和距离处的两个像素之间的相关性值 angle = 0 # 示例:选取水平方向 distance_value = 1 # 示例:选取第一个距离 correlation_value = correlation_matrix[distance_value, angle] # 使用pearsonr计算相关系数(如果需要非线性方法,可以使用其他函数) correlation, _ = pearsonr(image.flatten(), image.flatten())
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值