矩阵及其运算和相关性质

矩阵及其运算

矩阵的定义

定义:由 m × n m \times n m×n个数 a i j ( i = 1 , 2 , . . . , m ; j = 1 , 2 , . . . , n ) a_{ij}(i=1,2,...,m;j=1,2,...,n) aij(i=1,2,...,m;j=1,2,...,n)排成的 m m m n n n列的数表,称为 m m m n n n列矩阵,简称 m × n m \times n m×n矩阵
A = ( a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a m 1 a m 2 . . . a m n ) A= \begin{pmatrix} a_{11} & a_{12} & ... &a_{1n} \\ a_{21} & a_{22} & ... &a_{2n} \\ ... & ... & ... &... \\ a_{m1} & a_{m2} & ... &a_{mn} \\ \end{pmatrix} A=a11a21...am1a12a22...am2............a1na2n...amn
矩阵的元 : 矩阵 A A A中的 m × n m \times n m×n个元素称为矩阵的元, a i j a_{ij} aij称为矩阵的 ( i , j ) (i,j) (i,j)元.
矩阵的简记 : ( a i j ) (a_{ij}) (aij)或者 ( a i j ) m × n (a_{ij})_{m \times n} (aij)m×n或者 A m × n A_{m \times n} Am×n
方阵 : 行数与列数都等于 n n n的矩阵称为方阵,记做 A n A_n An
行矩阵 : 只有一行的矩阵 A = ( a 1 , a 2 , . . . , a n ) A=(a_{1}, a_{2},...,a_{n}) A=(a1,a2,...,an)的矩阵叫行矩阵,也称为行向量
列矩阵 : 只有一列的矩阵称作列矩阵,也称为列向量,如下:
B = ( b 1 b 2 . . . b n ) B= \begin{pmatrix} b_1\\ b_2\\ .\\ .\\ .\\ b_n \end{pmatrix} B=b1b2...bn
同形矩阵 : 如果两个矩阵行列数相等,则称为同形矩阵
矩阵相等 : 如果矩阵 A = ( a i j ) m × n A=(a_{ij})_{m \times n} A=(aij)m×n和矩阵 B = ( b i j ) m × n B=(b_{ij})_{m \times n} B=(bij)m×n是同形矩阵,并且 A A A B B B的第 ( i , j ) (i,j) (i,j)元都相等,则矩阵 A A A B B B相等,记做 A = B A=B A=B
零矩阵 : 矩阵中的元都为零的矩阵,叫做零矩阵,记做 : 0 0 0,该处与一般的零值是有区别的,该处的零为一个矩阵,不是一个数字.
单位矩阵 : (主)对角线上的元素都为1,其他位置的元素都为0的你 n n n方阵,称作为单位矩阵.
E = ( 1 0 0 . . . 0 0 0 1 0 . . . 0 0 0 0 1 . . . 0 0 . . . . . . . . . 1 . . . . . . 0 0 0 . . . 1 0 0 0 0 . . . 0 1 ) E= \begin{pmatrix} 1 & 0 & 0 &... & 0 & 0\\ 0 & 1 & 0 &... & 0 & 0\\ 0 & 0 & 1 &... & 0 & 0\\ ... & ... & ... & 1 & ... & ...\\ 0 & 0 & 0 &... & 1 & 0\\ 0 & 0 & 0 &... & 0 & 1\\ \end{pmatrix} E=100...00010...00001...00.........1......000...10000...01
对角矩阵 : 对于 n n n阶方阵,不在对角线上的元都为0的方阵,叫做对角矩阵,记作:
Λ = d i a g ( λ 1 , λ 2 , . . . , λ n )   = ( λ 1 0 0 . . . 0 0 0 λ 2 0 . . . 0 0 0 0 λ 3 . . . 0 0 . . . . . . . . . λ i . . . . . . 0 0 0 . . . λ n − 1 0 0 0 0 . . . 0 λ n ) \varLambda=diag(\lambda_1,\lambda_2,...,\lambda_n)\\ \space \\ =\begin{pmatrix} \lambda_1 & 0 & 0 &... & 0 & 0\\ 0 & \lambda_2 & 0 &... & 0 & 0\\ 0 & 0 & \lambda_3 &... & 0 & 0\\ ... & ... & ... & \lambda_{i} & ... & ...\\ 0 & 0 & 0 &... & \lambda_{n-1} & 0\\ 0 & 0 & 0 &... & 0 & \lambda_n\\ \end{pmatrix} Λ=diag(λ1,λ2,...,λn) =λ100...000λ20...0000λ3...00.........λi......000...λn10000...0λn

矩阵运算

矩阵的加法

定义 设有两个同形矩阵 A = ( a i j ) m × n A=(a_{ij})_{m \times n} A=(aij)m×n B = ( b i j ) m × n B=(b_{ij})_{m \times n} B=(bij)m×n,规定 A + B A+B A+B矩阵相加为:
A + B = ( a 11 + b 11 a 12 + b 12 . . . a 1 n + b 1 n a 21 + b 21 a 22 + b 21 . . . a 2 n + b 2 n . . . . . . . . . . . . a m 1 + b m 1 a m 2 + b m 2 . . . a m n + b m n ) A+B= \begin{pmatrix} a_{11} +b_{11}& a_{12}+b_{12} & ... &a_{1n}+b_{1n} \\ a_{21} +b_{21}& a_{22} +b_{21}& ... &a_{2n} +b_{2n}\\ ... & ... & ... &... \\ a_{m1}+b_{m1} & a_{m2}+b_{m2} & ... &a_{mn}+b_{mn} \\ \end{pmatrix} A+B=a11+b11a21+b21...am1+bm1a12+b12a22+b21...am2+bm2............a1n+b1na2n+b2n...amn+bmn
数与矩阵相乘
λ A = ( λ a 11 λ a 12 . . . λ a 1 n λ a 21 λ a 22 . . . λ a 2 n . . . . . . . . . . . . λ a m 1 λ a m 2 . . . λ a m n ) \lambda A = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & ... & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & ... & \lambda a_{2n} \\ ... & ... & ... &... \\ \lambda a_{m1} & \lambda a_{m2} & ... & \lambda a_{mn} \\ \end{pmatrix} λA=λa11λa21...λam1λa12λa22...λam2............λa1nλa2n...λamn

矩阵与矩阵相乘

定义 如果有 A = ( a i j ) m × s A=(a_{ij})_{m \times s} A=(aij)m×s为一个 m × s m \times s m×s矩阵, B = ( b i j ) s × n B=(b_{ij})_{s \times n} B=(bij)s×n为一个 s × n s \times n s×n形矩阵,则定义 A × B A \times B A×B得到的矩阵为 C = ( c i j ) m × n C=(c_{ij})_{m \times n} C=(cij)m×n形矩阵:
A × B = ( a 11 a 12 . . . a 1 s a 21 a 22 . . . a 2 s . . . . . . . . . . . . a m 1 a m 2 . . . a m s ) × ( b 11 b 12 . . . b 1 n b 21 b 22 . . . b 2 n . . . . . . . . . . . . b s 1 b s 2 . . . b s n )   c 11 = a 11 ∗ b 11 + a 12 ∗ b 21 + . . . + a 1 j ∗ b j 1 + . . . + a 1 s ∗ b s 1 c 12 = a 11 ∗ b 12 + a 12 ∗ b 22 + . . . + a 1 j ∗ b j 2 + . . . + a 1 s ∗ b s 2 . . . c 1 n = a 11 ∗ b 1 n + a 12 ∗ b 2 n + . . . + a 1 j ∗ b j n + . . . + a 1 s ∗ b s n . . . c 2 n = a 21 ∗ b 1 n + a 22 ∗ b 2 n + . . . + a 2 j ∗ b j n + . . . + a 2 s ∗ b s n c 3 n = a 31 ∗ b 1 n + a 32 ∗ b 2 n + . . . + a 3 j ∗ b j n + . . . + a 3 s ∗ b s n . . . c m n = a m 1 ∗ b 1 n + a m 2 ∗ b 2 n + . . . + a m j ∗ b j n + . . . + a m s ∗ b s n A \times B = \begin{pmatrix} a_{11} & a_{12} & ... &a_{1s} \\ a_{21} & a_{22} & ... &a_{2s} \\ ... & ... & ... &... \\ a_{m1} & a_{m2} & ... &a_{ms} \\ \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} & ... &b_{1n} \\ b_{21} & b_{22} & ... &b_{2n} \\ ... & ... & ... &... \\ b_{s1} & b_{s2} & ... &b_{sn} \\ \end{pmatrix}\\ \space \\ c_{11}=a_{11}*b_{11}+a_{12}*b_{21}+...+a_{1j}*b_{j1}+...+a_{1s}*b_{s1}\\ c_{12}=a_{11}*b_{12}+a_{12}*b_{22}+...+a_{1j}*b_{j2}+...+a_{1s}*b_{s2}\\ ...\\ c_{1n}=a_{11}*b_{1n}+a_{12}*b_{2n}+...+a_{1j}*b_{jn}+...+a_{1s}*b_{sn}\\ ...\\ c_{2n}=a_{21}*b_{1n}+a_{22}*b_{2n}+...+a_{2j}*b_{jn}+...+a_{2s}*b_{sn}\\ c_{3n}=a_{31}*b_{1n}+a_{32}*b_{2n}+...+a_{3j}*b_{jn}+...+a_{3s}*b_{sn}\\ ...\\ c_{mn}=a_{m1}*b_{1n}+a_{m2}*b_{2n}+...+a_{mj}*b_{jn}+...+a_{ms}*b_{sn}\\ A×B=a11a21...am1a12a22...am2............a1sa2s...ams×b11b21...bs1b12b22...bs2............b1nb2n...bsn c11=a11b11+a12b21+...+a1jbj1+...+a1sbs1c12=a11b12+a12b22+...+a1jbj2+...+a1sbs2...c1n=a11b1n+a12b2n+...+a1jbjn+...+a1sbsn...c2n=a21b1n+a22b2n+...+a2jbjn+...+a2sbsnc3n=a31b1n+a32b2n+...+a3jbjn+...+a3sbsn...cmn=am1b1n+am2b2n+...+amjbjn+...+amsbsn
由上可得, C C C中第 ( i , j ) (i,j) (i,j)元的值如下:
c i j = a i 1 b 1 j + a i 2 b 2 j + . . . + a i s b s j = ∑ k = 1 s a i k b k j   i ∈ { 1 , 2 , . . . , m } ;   j ∈ { 1 , 2 , . . . , n } c_{ij} = a_{i1}b_{1j}+a_{i2}b_{2j}+...+a_{is}b_{sj} = \sum_{k=1}^s a_{ik}b_{kj}\\ \space \\ i \isin \{1,2,...,m\}; \space j \isin \{1,2,...,n\} cij=ai1b1j+ai2b2j+...+aisbsj=k=1saikbkj i{1,2,...,m}; j{1,2,...,n}
矩阵乘法的性质
1. ( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC)
2. λ ( A B ) = ( λ A ) B = A ( λ B ) \lambda (AB)=(\lambda A)B=A(\lambda B) λ(AB)=(λA)B=A(λB)其中 λ \lambda λ为一个数
3. ( A + B ) C = A C + B C (A+B)C = AC + BC (A+B)C=AC+BC     或者     A ( B + C ) = A B + A C A(B+C)=AB+AC A(B+C)=AB+AC
4. E m A m × n = A m × n E n = A m × n E_{m}A_{m \times n}=A_{m \times n}E_{n}=A_{m \times n} EmAm×n=Am×nEn=Am×n
5. 称 λ E n \lambda E_{n} λEn为纯量阵,则由2和4性质可得 λ E n A n = E n ( λ A n ) = λ A n \lambda E_{n}A_{n}=E_{n}(\lambda A_{n})=\lambda A_{n} λEnAn=En(λAn)=λAn:
6. 矩阵的幂运算只适用于方正:
( A n ) k ( A n ) j = ( A n ) k + j   ( ( A n ) k ) l = ( A n ) k l (A_{n})^k(A_{n})^j=(A_{n})^{k+j}\\ \space \\ ((A_{n})^k)^l=(A_{n})^{kl} (An)k(An)j=(An)k+j ((An)k)l=(An)kl

矩阵转置

定义:将矩阵 A A A的行换成同序数的列,形成的新矩阵称为 A A A的转置矩阵,记做 A T A^T AT
A = ( a i j ) m × n = ( a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a m 1 a m 2 . . . a m n )   A T = ( a j i ) n × m = ( a 11 a 12 . . . a 1 m a 21 a 22 . . . a 2 m . . . . . . . . . . . . a n 1 a n 2 . . . a n m ) A=(a_{ij})_{m \times n}=\begin{pmatrix} a_{11} & a_{12} & ... &a_{1n} \\ a_{21} & a_{22} & ... &a_{2n} \\ ... & ... & ... &... \\ a_{m1} & a_{m2} & ... &a_{mn} \\ \end{pmatrix}\\ \space \\ A^T=(a_{ji})_{n \times m} = \begin{pmatrix} a_{11} & a_{12} & ... &a_{1m} \\ a_{21} & a_{22} & ... &a_{2m} \\ ... & ... & ... &... \\ a_{n1} & a_{n2} & ... &a_{nm} \\ \end{pmatrix} A=(aij)m×n=a11a21...am1a12a22...am2............a1na2n...amn AT=(aji)n×m=a11a21...an1a12a22...an2............a1ma2m...anm
性质1: ( A T ) T = A (A^T)^T=A (AT)T=A
性质2: ( A + B ) T = A T + B T (A + B)^T=A^T + B^T (A+B)T=AT+BT
性质3: ( λ A ) T = λ A T (\lambda A)^T=\lambda A^T (λA)T=λAT
性质4: ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT,(特别注意,转置后乘法需要交换顺序)

方阵的行列式

定义:由方阵 A A A的各个元素组成的行列式,称为方阵 A A A的行列式,记作: ∣ A ∣ \begin{vmatrix}A\end{vmatrix} A或者 d e t A detA detA
性质1 : ∣ A T ∣ = ∣ A ∣ \begin{vmatrix}A^T\end{vmatrix}=\begin{vmatrix}A\end{vmatrix} AT=A
性质2: ∣ λ A n ∣ = λ n ∣ A ∣ \begin{vmatrix}\lambda A_{n}\end{vmatrix}=\lambda ^n \begin{vmatrix}A\end{vmatrix} λAn=λnA
性质3: ∣ A B ∣ = ∣ A ∣ ∣ B ∣ \begin{vmatrix}AB\end{vmatrix}=\begin{vmatrix}A\end{vmatrix}\begin{vmatrix}B\end{vmatrix} AB=AB
伴随矩阵:以方阵 A A A的行列式 ∣ A ∣ \begin{vmatrix}A\end{vmatrix} A的各个元素 A i j A_{ij} Aij的代数余子式组成的矩阵,叫做伴随矩阵,记作: A ∗ A^* A
A ∗ = ( A 11 A 12 . . . A 1 n A 21 A 22 . . . A 2 n . . . . . . . . . . . . A n 1 A n 2 . . . A n n ) A^*= \begin{pmatrix} A_{11} & A_{12} & ... & A_{1n}\\ A_{21} & A_{22} & ... & A_{2n}\\ ... & ... & ... & ...\\ A_{n1} & A_{n2} & ... & A_{nn}\\ \end{pmatrix} A=A11A21...An1A12A22...An2............A1nA2n...Ann
伴随矩阵有以下性质:
A ∗ A = A A ∗ = ∣ A ∣ E A^*A=AA^*=\begin{vmatrix}A\end{vmatrix} E AA=AA=AE

  • 5
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值