ptrade从零开始学习量化交易第15期【ptrade策略API介绍之set_fixed_slippage-设置固定滑点】

设置函数

更加详细的调用方法,后续会慢慢整理。

也可找寻博主历史文章,搜索关键词使用方案,比如本文涉及函数set_benchmark !

感谢关注,咨询免费开通量化回测与获取实盘权限,欢迎和博主联系!

set_fixed_slippage-设置固定滑点

set_fixed_slippage(fixedslippage=0.0)
使用场景

该函数仅在回测模块可用

接口说明

该函数用于设置固定滑点,滑点在真实交易场景是不可避免的,因此回测中设置合理的滑点有利于让回测逼近真实场景。

注意事项:

参数

fixedslippage:固定滑点,委托价格与最后的成交价格的价差设置,这个价差是一个固定的值(比如0.02元,撮合成交时委托价格±0.01元)。最终的成交价格=委托价格±float(fixedslippage)/2。

返回

None

示例
def initialize(context):
    g.security = "600570.SS"
    set_universe(g.security)
    # 将滑点设置为固定的0.2元,即原本买入交易的成交价为10元,则设置之后成交价将变成10.1元
    set_fixed_slippage(fixedslippage=0.2)

def handle_data(context, data):
    pass
<think>嗯,用户想要在Ptrade软件上进行ETF网格交易策略的回测,需要示例代码。首先,我得回忆一下Ptrade支持的API和语法。Ptrade用的是Python,所以代码应该是Python写的。网格交易的基本逻辑是设定价格区间,分成多个网格,价格波动时自动买卖。 首先,需要确定ETF代码,比如510050.SH。然后设置网格参数,比如基准价、网格间距、数量。初始化的时候,可能需要获取历史数据来计算基准价,比如过去20天的均价。然后,在每天开盘前取消未成交的订单,避免重复下单。 接下来,在每次的定时任务里,比如每30分钟执行一次,获取当前持仓和最新价。计算当前价与基准价的偏离百分比,决定买入或卖出。比如,偏离-3%时买入一格,偏离+3%时卖出一格。这里可能需要用round函数来确保网格的间距正确。 还需要处理下单逻辑,检查是否有可用资金或持仓,避免无效操作。比如,买入时要确保资金足够,卖出时要确保有足够的持仓。每次下单后,记录基准价到context变量,避免重复触发。 然后,用户可能需要回测结果的分析,比如年化收益率、最大回撤等指标。Ptrade的回测报告会自动生成这些数据,所以代码里不需要额外处理,但用户可能需要知道如何查看报告。 还要考虑一些常见问题,比如网格间距调整、止盈止损、不同时间段的参数优化。比如,用户可能想知道如何修改网格间距,或者在策略中加入止盈条件。这时候可以提供一些修改建议,比如调整grid_percent或者添加止损逻辑。 另外,引用中的信息提到Ptrade支持算法交易和网格策略,所以代码示例需要符合这些功能。确保代码中使用了正确的API,比如order_target和get_position。还要注意Ptrade的定时任务设置,比如schedule_daily和schedule_timer。 最后,测试代码是否存在语法错误,比如变量名是否正确,函数调用是否恰当。例如,get_history的正确参数,order_target的用法是否正确。确保用户可以直接复制代码进行回测,并根据需要调整参数。 总结一下,步骤是:初始化参数,定时任务处理订单,计算网格触发条件,执行买卖操作,记录状态。同时,提供优化方向和常见问题解答,帮助用户进一步调整策略。</think>以下是为Ptrade平台设计的ETF网格交易策略回测示例代码,包含完整逻辑和注释说明: ```python # 导入Ptrade量化交易API from ptrade.api import * import numpy as np # 初始化函数 def initialize(context): # 设置标的为上证50ETF context.symbol = "510050.SH" # 网格参数设置 context.benchmark_price = 0 # 基准价格 context.grid_interval = 0.03 # 3%网格间距 context.grid_qty = 1000 # 每格交易数量 # 定时任务设置 schedule_daily(reset_benchmark, time="09:30") # 每日开盘重置基准价 schedule_timer(check_grid, frequency="30m") # 每30分钟检查网格 # 重置基准价函数 def reset_benchmark(context): # 获取前20日收盘价计算基准 hist = get_history(20, "1d", "close", [context.symbol]) context.benchmark_price = np.mean(hist[context.symbol]) cancel_all_orders() # 取消前日未成交订单 # 网格检查函数 def check_grid(context): price = get_price(context.symbol) # 获取实时价格 position = get_position(context.symbol) # 获取持仓 # 计算价格偏离百分比 deviation = (price - context.benchmark_price)/context.benchmark_price # 向下突破网格 if deviation <= -context.grid_interval: buy_qty = context.grid_qty * round(abs(deviation)/context.grid_interval) if context.cash >= buy_qty * price: order_target(context.symbol, position + buy_qty) context.benchmark_price = price # 更新基准价 # 向上突破网格 elif deviation >= context.grid_interval: sell_qty = min(position, context.grid_qty * round(deviation/context.grid_interval)) if sell_qty > 0: order_target(context.symbol, position - sell_qty) context.benchmark_price = price # 更新基准价 # 获取价格函数 def get_price(symbol): bars = get_latest_bars(symbol, 1) return bars[-1]["close"] # 策略回测参数设置 def backtest_setting(): return { "start": "2020-01-01", "end": "2023-12-31", "cash": 1000000, "commission": 0.0002, "slippage": 0.001 } ``` §§代码说明与优化方向§§ 1. **参数优化方向**: - 网格间距$grid\_interval$可调整为动态参数,根据波动率指标ATR动态计算[^4] - 加入止盈止损机制,当累计收益率超过$15\%$时平仓[^2] 2. **风险控制模块**: ```python # 可添加最大回撤控制 if context.portfolio.max_drawdown > 0.2: order_target(context.symbol, 0) print("触发最大回撤20%止损") ``` 3. **进阶功能扩展**: - 支持多ETF轮动配置,通过夏普比率动态选择标的[^1] - 添加盘口流动性检测,避免大单冲击成本[^3] 4. **回测结果分析**: Ptrade回测报告将自动生成以下指标: - 年化收益率$R_{annual} = \frac{P_{end} - P_{start}}{P_{start}} \times \frac{365}{days}$ - 最大回撤$MDD = \max_{0≤i<j≤n}( \frac{P_i - P_j}{P_i} )$ - 胜率$WR = \frac{\sum profitable\ trades}{\sum total\ trades}$ §§常见问题解答§§ 1. **如何修改网格间距**? 调整`context.grid_interval`参数,建议保持$0.01≤interval≤0.05$,过小会增加交易频率和摩擦成本[^2] 2. **如何处理分红除权**? Ptrade已自动处理复权价格,使用`get_history()`获取的是后复权数据 3. **如何添加交易信号提醒**? 可在订单函数后添加: ```python send_message(f"已下单{quantity}股{context.symbol} @ {price}") ``` 4. **策略容量评估**: 建议单策略资金规模不超过$2000$万元,避免在低流动性ETF上产生显著冲击成本[^1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值