ResNet的水果分类识别系统

本文介绍了一个使用ResNet18进行水果图像分类的系统,详细讲解了数据预处理、网络结构、损失函数和超参数调节。在81类水果数据集上,模型在测试集的精度达到约71%。对比了AlexNet、VGG和ResNet的优缺点。
摘要由CSDN通过智能技术生成

目录

序言

一、数据预处理

二、网络结构

三、损失函数

四、超参数调节

学习率(优化器统一为Adam,Epoch=50) :

 优化器(学习率lr=0.001,epcoh=50):

五、测试集上评估最后模型的效果

六、经典算法/优点和缺点

图像分类领域经典的3种算法:Alex网络、VGG网络、ResNet网络。

七、通过模型预测,最终结果


序言

※本项目是与组员共同创作非个人独立完成

本文主要介绍使用python搭建:一个使用了ResNet的水果图像分类识别系统。

使用ResNet进行图像分类的相关代码。

  • 数据预处理,生成用于输入TensorFlow模型的TFRecord的数据。

  • 模型构建及训练,使用tensorflow.keras构建深度残差网络。

  • 预测水果分类并进行模型评估。

一、数据预处理

  1. 读取数据集:本次参与训练的数据集共81个类别,数据集格式为ImageNet数据集格式

  2. 处理数据:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值