第1章 微分方程引论

微分方程引论

1.1微分方程概念

1.1.1微分方程类型

微分方程(DE):含有因变量对一个或多个自变量导数的方程称为微分方程,例如:
d y   d x = 0.2 x y .  \frac{\mathrm{d} y}{\mathrm{~d} x}=0.2 x y \text {. }  dxdy=0.2xy
常微分方程(ODE):一个方程只含有因变量对一个自变量的导数,例如:
d y   d x + 5 y = e x , d 2 y   d x 2 − d y   d x + 6 y = 0 , d x   d t + d y   d t = 2 x + y \frac{\mathrm{d} y}{\mathrm{~d} x}+5 y=\mathrm{e}^x, \quad \frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}-\frac{\mathrm{d} y}{\mathrm{~d} x}+6 y=0, \quad \frac{\mathrm{d} x}{\mathrm{~d} t}+\frac{\mathrm{d} y}{\mathrm{~d} t}=2 x+y  dxdy+5y=ex, dx2d2y dxdy+6y=0, dtdx+ dtdy=2x+y
偏微分方程(PDE):一个方程含有因变量对两个或更多个自变量的偏导数,例如:
∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = 0 , ∂ 2 u ∂ x 2 = ∂ 2 u ∂ t 2 − 2 ∂ u ∂ t , ∂ u ∂ t = − ∂ v ∂ x \frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0, \quad \frac{\partial^2 u}{\partial x^2}=\frac{\partial^2 u}{\partial t^2}-2 \frac{\partial u}{\partial t}, \quad \frac{\partial u}{\partial t}=-\frac{\partial v}{\partial x} x22u+y22u=0,x22u=t22u2tu,tu=xv

微分方程的阶:微分方程的最高阶导数的阶数,例如以下这个方程是二阶的:
d 2 y   d x 2 + 5 ( d y   d x ) 3 − 4 y = e x \frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}+5\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^3-4 y=\mathrm{e}^x  dx2d2y+5( dxdy)34y=ex
规定常微分方程一般形式
F ( x , y , y ′ , ⋯   , y ( n ) ) = 0 F\left(x, y, y^{\prime}, \cdots, y^{(n)}\right)=0 F(x,y,y,,y(n))=0
规定常微分方程的正规型
d n y   d x n = f ( x , y , y ′ , ⋯   , y ( n − 1 ) ) \frac{\mathrm{d}^n y}{\mathrm{~d} x^n}=f\left(x, y, y^{\prime}, \cdots, y^{(n-1)}\right)  dxndny=f(x,y,y,,y(n1))

线性常微分方程 n n n 阶常微分方程被称为是线性的,如果 y , y ′ , ⋯ y, y^{\prime}, \cdots y,y,, y ( n ) y^{(n)} y(n) 的组合是线性的,形如:
a n ( x ) y ( n ) + a n − 1 ( x ) y ( n − 1 ) + ⋯ + a 1 ( x ) y ′ + a 0 ( x ) y − g ( x ) = 0 a_n(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_1(x) y^{\prime}+a_0(x) y-g(x)=0 an(x)y(n)+an1(x)y(n1)++a1(x)y+a0(x)yg(x)=0

非线性微分方程 n n n 阶常微分方程被称为是非线性的,如果 y , y ′ , ⋯ y, y^{\prime}, \cdots y,y,, y ( n ) y^{(n)} y(n) 的组合是非线性的,例如:
( 1 − y ) y ′ + 2 y = e x , d 2 y   d x 2 + sin ⁡ y = 0 , d 4 y   d x 4 + y 2 = 0 (1-y) y^{\prime}+2 y=\mathrm{e}^x, \quad \frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}+\sin y=0, \quad \frac{\mathrm{d}^4 y}{\mathrm{~d} x^4}+y^2=0 (1y)y+2y=ex, dx2d2y+siny=0, dx4d4y+y2=0

1.1.2常微分方程的解

常微分方程的解:任给一个定义在区间 I I I 上的函数 ϕ \phi ϕ, 它至少有 n n n 阶定义在 I I I 上的连续导数, ϕ \phi ϕ 满足 n n n阶常微分方程两端相等, 就称 ϕ \phi ϕ 为方程在区间 I I I 上的解。

定义区间:上述区间 I I I 可以根据需要称为定义区间 (interval of definition)、存在区间 (interval of existence)、有效区间 (interval of validity)、解存在的域 (domain)。 I I I 可以是一个开区间 ( a , b ) (a, b) (a,b) 、闭区间 [ a , b ] [a, b] [a,b] 、无限区间 ( a , + ∞ ) (a,+\infty) (a,+).

例题:验证下列函数是所给微分方程在 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 上的解.
( a ) d y / d x = x y 1 / 2 ; y = 1 16 x 4 . ( b ) y ′ ′ − 2 y ′ + y = 0 ; y = x e x . (a) \mathrm{d} y / \mathrm{d} x=x y^{1 / 2} ; \quad y=\frac{1}{16} x^4.\quad (b) y^{\prime \prime}-2 y^{\prime}+y=0 ; \quad y=x \mathrm{e}^x. (a)dy/dx=xy1/2;y=161x4.(b)y′′2y+y=0;y=xex.

解曲线:常微分方程的解 ϕ \phi ϕ 的图形称为解曲线 (solution curve)。

注1:因为 ϕ \phi ϕ 是可微函数, 所以在定义区间 I I I 上是连续的.

注2:作为函数 ϕ \phi ϕ 的图形和作为解 ϕ \phi ϕ 的图形可能是不同的.

注3:函数 ϕ \phi ϕ 的定义域和解 ϕ \phi ϕ 的定义区间 I I I 可能不相同. 例 2 说明了这种区别所在.

常微分方程的显式解:解中的因变量只通过自变量和常数来表示的称为显式解 (explicit solution)。把显式解看成是一个显函数 y = ϕ ( x ) y=\phi(x) y=ϕ(x), 我们可以用标准的规则对它进行变形、运算和微分。

随着继续深人学习如何解常微分方程, 我们将会看到解的形式不总是形如 y = ϕ ( x ) y=\phi(x) y=ϕ(x) 的显式解, 尤其是在我们解非线性一阶微分方程时, 情况更是如此. 因此要熟悉如 G ( x , y ) = 0 G(x, y)=0 G(x,y)=0 的形式所定义的隐式解 ϕ \phi ϕ.

常微分方程的隐式解:函数关系 G ( x , y ) = 0 G(x, y)=0 G(x,y)=0 称为常微分方程在区间 I I I 上的隐式解(implicit solution), 假定至少存在一个函数 ϕ \phi ϕ 满足这个函数关系以及定义在区间 I I I 上的微分方程.

例题:验证函数关系 x 2 + y 2 = 25 x^2+y^2=25 x2+y2=25 是微分方程
d y   d x = − x y \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{x}{y}  dxdy=yx

在区间 − 5 < x < 5 -5<x<5 5<x<5 上的隐式解。

解族:解 ϕ \phi ϕ 可以被看作是一个方程的积分 (integral), 它的图形称为积分曲线 (integral curve). 在微积分中, 当计算一个原函数或不定积分时, 我们使用了一个积分常数 c c c.

解一个一阶微分方程 F ( x , y F(x, y F(x,y, y ′ ) = 0 \left.y^{\prime}\right)=0 y)=0 时, 我们通常得到含有一个任意常数或参数 c c c 的解, G ( x , y , c ) = 0 G(x, y, c)=0 G(x,y,c)=0, 称之为单参数解族。

解一个 n n n 阶微分方程 F ( x , y , y ′ , ⋯   , y ( n ) ) = 0 F\left(x, y, y^{\prime}, \cdots, y^{(n)}\right)=0 F(x,y,y,,y(n))=0,我们将得到一个 n n n 参数解族, G ( x , y , c 1 , c 2 , ⋯   , c n ) = 0 G\left(x, y, c_1, c_2, \cdots, c_n\right)=0 G(x,y,c1,c2,,cn)=0.

这意味着一个微分方程对应于无数个参数可以有无数个解. 微分方程中不含任何参数的解称为特解 (particular solution).

例1: y = c x − x c o s x y=cx-xcosx y=cxxcosx是方程 x y ′ − y = x 2 s i n x xy'-y=x^2sinx xyy=x2sinx的单参数解族, c c c取不同的值有不同的结果。

例2: y = c 1 e x + c 2 x e x y=c_1e^x+c_2xe^x y=c1ex+c2xex是方程 y ′ ′ − 2 y ′ + y = 0 y''-2y'+y=0 y′′2y+y=0的双参数解族,不同的 c 1 , c 2 c_1,c_2 c1,c2组合有不同的结果。

分段的解:对一个方程可以从解族里面选取不同解,分段组合在一起,以分段函数的形式构成解。

例3:分段定义的可微函数
y = { − x 4 , x < 0 x 4 , x ⩾ 0 y=\left\{\begin{array}{l} -x^4, x<0 \\ x^4, x \geqslant 0 \end{array}\right. y={x4,x<0x4,x0
是微分方程 x y ′ − 4 y = 0 x y^{\prime}-4 y=0 xy4y=0 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 上的一个解。(单参数函数族 y = c x 4 y=c x^4 y=cx4 是微分方程的解族)

微分方程组:由两个或更多的微分方程方程组成的称为微分方程组,这些方程含有关于一个自变量的两个或两个以上的导数。

例如, 如果 x x x y y y 表示因变量, t t t 表示自变量, 那么由两个一阶微分方程组成的方程组为
d x   d t = f ( t , x , y ) d y   d t = g ( t , x , y ) . \begin{aligned} \frac{\mathrm{d} x}{\mathrm{~d} t} & =f(t, x, y) \\ \frac{\mathrm{d} y}{\mathrm{~d} t} & =g(t, x, y) . \end{aligned}  dtdx dtdy=f(t,x,y)=g(t,x,y).

这个方程组的解是两个定义在区间 I I I 上的可微函数 x = ϕ 1 ( t ) , y = ϕ 2 ( t ) x=\phi_1(t), y=\phi_2(t) x=ϕ1(t),y=ϕ2(t), 并且在这个区间上满足每一个方程。

1.2初值问题概念

1.2.1初值问题类型

初值问题:有一些微分方程添加了约束条件,规定了在某点 x 0 x_0 x0处的函数值与导数值,可以描述成如下方程:
d n y   d x n = f ( x , y , y ′ , ⋯   , y ( n − 1 ) ) y ( x 0 ) = y 0 y ′ ( x 0 ) = y 1 ⋯ y ( n − 1 ) ( x 0 ) = y n − 1 \begin{align} &\frac{\mathrm{d}^n y}{\mathrm{~d} x^n}=f\left(x, y, y^{\prime}, \cdots, y^{(n-1)}\right)\\ &y\left(x_0\right)=y_0\\ &y^{\prime}\left(x_0\right)=y_1\\ &\cdots\\ &y^{(n-1)}\left(x_0\right)=y_{n-1} \end{align}  dxndny=f(x,y,y,,y(n1))y(x0)=y0y(x0)=y1y(n1)(x0)=yn1

这里 y 0 , y 1 , ⋯   , y n − 1 y_0, y_1, \cdots, y_{n-1} y0,y1,,yn1 是任意的实约束条件, 称为初值问题 (IVP)。

一阶初值问题
d y   d x = f ( x , y ) y ( x 0 ) = y 0 \begin{align} &\frac{\mathrm{d} y}{\mathrm{~d} x}=f\left(x, y\right)\\ &y\left(x_0\right)=y_0\\ \end{align}  dxdy=f(x,y)y(x0)=y0

例题:容易证明 y = c e x y=c \mathrm{e}^x y=cex 是一阶方程 y ′ = y y^{\prime}=y y=y 在区间 ( − ∞ (-\infty (, + ∞ ) +\infty) +) 上的单参数解族。

如果指定一个初始条件, 比如说, y ( 0 ) = 3 y(0)=3 y(0)=3,把 x = 0 , y = 3 x=0, y=3 x=0,y=3 代人解族, 得到常数 3 = c e 0 = c 3=c \mathrm{e}^0=c 3=ce0=c. 因此初值问题
y ′ = y , y ( 0 ) = 3 y^{\prime}=y, \quad y(0)=3 y=y,y(0)=3

的一个解是 y = 3 e x y=3 \mathrm{e}^x y=3ex

现在需要让微分方程的解通过点 ( 1 , − 2 ) (1,-2) (1,2) ,那么由 y ( 1 ) = − 2 y(1)=-2 y(1)=2 可得, − 2 = c e -2=c \mathrm{e} 2=ce 或 $c=-2 \mathrm{e}^{-1} $,初值问题
y ′ = y , y ( 1 ) = − 2 y^{\prime}=y, \quad y(1)=-2 y=y,y(1)=2

的一个解是 y = − 2 e x − 1 y=-2 \mathrm{e}^{x-1} y=2ex1

二阶初值问题
d 2 y   d x 2 = f ( x , y , y ′ ) y ( x 0 ) = y 0 y ′ ( x 0 ) = y 1 \begin{align} &\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}=f\left(x, y, y^{\prime}\right)\\ &y\left(x_0\right)=y_0\\ &y^{\prime}\left(x_0\right)=y_1\\ \end{align}  dx2d2y=f(x,y,y)y(x0)=y0y(x0)=y1
例题:已知 x = c 1 cos ⁡ 4 t + c 2 sin ⁡ 4 t x=c_1 \cos 4 t+c_2 \sin 4 t x=c1cos4t+c2sin4t 是方程 x ′ ′ + 16 x = 0 x^{\prime \prime}+16 x=0 x′′+16x=0 的双参数解族.求初值问题的解。
x ′ ′ + 16 x = 0 , x ( π / 2 ) = − 2 , x ′ ( π / 2 ) = 1 x^{\prime \prime}+16 x=0, x(\pi / 2)=-2, \quad x^{\prime}(\pi / 2)=1 x′′+16x=0,x(π/2)=2,x(π/2)=1

把初值带入解族,计算得到 c 1 = − 2 , c 2 = 1 / 4 c_1=-2,c_2=1/4 c1=2,c2=1/4,因此上述初值问题的一个解是 x = − 2 cos ⁡ 4 t + 1 / 4 sin ⁡ 4 t x=-2 \cos 4 t+1 / 4 \sin 4 t x=2cos4t+1/4sin4t

1.2.2初值问题的解

初值问题的解有两个值得讨论的问题,即解的存在性与唯一性问题。

利普希茨条件 : 存在常数 L > 0 \mathrm{L}>0 L>0 ,使得函数 f ( x , y ) \mathrm{f}(\mathrm{x}, \mathrm{y}) f(x,y) 在区域D内满足不等式
∣ f ( x , y 1 ) − f ( x , y 2 ) ∣ ⩽ L ∣ y 1 − y 2 ∣ \left|f\left(x, y_1\right)-f\left(x, y_2\right)\right| \leqslant L\left|y_1-y_2\right| f(x,y1)f(x,y2)Ly1y2

则称函数 f ( x , y ) f(x, y) f(x,y) 在区域 D D D 内对 y y y 满足利普希茨条件(Lipschitz condition),L 称为利普希茨常数。

皮卡定理(Picard theorem):对一阶显式微分方程初值问题,如果函数 f ( x , y ) f(x, y) f(x,y) 在矩形区域
R : ∣ x − x 0 ∣ ⩽ a , ∣ y − y 0 ∣ ⩽ b \mathrm{R}:\left|\mathrm{x}-\mathrm{x}_0\right| \leqslant \mathrm{a},\left|\mathrm{y}-\mathrm{y}_0\right| \leqslant \mathrm{b} R:xx0a,yy0b

连续,关于 y \mathrm{y} y 满足利普希茨条件,则在区间 ∣ x − x 0 ∣ ⩽ h \left|\mathrm{x}-\mathrm{x}_0\right| \leqslant \mathrm{h} xx0h 有唯一解。其中常数
h = min ⁡ { a , b M } , M = max ⁡ ( x , y ) ∈ R ∣ f ( x , y ) ∣ \mathrm{h}=\min \left\{\mathrm{a}, \frac{\mathrm{b}}{\mathrm{M}}\right\}, \mathrm{M}=\max _{(\mathrm{x}, \mathrm{y}) \in \mathrm{R}}|\mathrm{f}(\mathrm{x}, \mathrm{y})| h=min{a,Mb},M=(x,y)Rmaxf(x,y)

可以用皮卡的逐步逼近法来证明这个定理。证明过程涉及五个步骤:

​ 命题1:求微分方程的初值问题的解等价于求一个积分方程的连续解;

​ 命题2:构造一个连续的逐步逼近序列;

​ 命题3:证明此逐步逼近序列一致收敛;

​ 命题4:证明此收敛的极限函数为所求初值问题的解;

​ 命题5:证明唯一性。

此证明过程比较复杂,此处不展开,可以参考视频讲解

奥斯古德条件:一般而言,满足利普希茨条件只是解的唯一性的充分条件,而非充要条件。下面我们介绍一种比较弱的条件,设函数 f ( x , y ) \mathrm{f}(\mathrm{x}, \mathrm{y}) f(x,y) 在区域G内连续,而且满足不等式
∣ f ( x , y 1 ) − f ( x , y 2 ) ∣ ⩽ F ( ∣ y 1 − y 2 ∣ ) \left|\mathrm{f}\left(\mathrm{x}, \mathrm{y}_1\right)-\mathrm{f}\left(\mathrm{x}, \mathrm{y}_2\right)\right| \leqslant \mathrm{F}\left(\left|\mathrm{y}_1-\mathrm{y}_2\right|\right) f(x,y1)f(x,y2)F(y1y2)
其中 F ( r ) > 0 \mathrm{F}(\mathrm{r})>0 F(r)>0 r > 0 \mathrm{r}>0 r>0 的连续函数,而且积分
∫ 0 r 1 d r F ( r ) = ∞ \int_0^{\mathrm{r}_1} \frac{\mathrm{dr}}{\mathrm{F}(\mathrm{r})}=\infty 0r1F(r)dr=其中 r 1 > 0 r_1>0 r1>0 为常数 ,则称 f ( x , y ) f(x, y) f(x,y) 在 G内对 y y y 满足Osgood条件。

定理 f ( x , y ) f(x, y) f(x,y) 在 G内对 y \mathrm{y} y 满足Osgood条件,则微分方程 d y d x = f ( x , y ) \frac{dy}{dx}=f(x, y) dxdy=f(x,y) G \mathrm{G} G 内经过每一点的解都是唯一的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值