第2章一阶微分方程

一阶微分方程

2.1分离变量方程

2.1.1分离变量方程概念

分离变量:形如
d y   d x = f ( x ) φ ( y ) \frac{\mathrm{d} y}{\mathrm{~d} x}=f(x) \varphi(y)  dxdy=f(x)φ(y)

的方程, 称为变量分离方程, 这里 f ( x ) , φ ( y ) f(x), \varphi(y) f(x),φ(y) 分别是 x , y x, y x,y 的连续函数.

如果 φ ( y ) ≠ 0 \varphi(y) \neq 0 φ(y)=0, 我们可将其改写成
d y φ ( y ) = f ( x ) d x , \frac{\mathrm{d} y}{\varphi(y)}=f(x) \mathrm{d} x, φ(y)dy=f(x)dx,
这样, 变量就“分离”开来了. 两边积分, 得到
∫ d y φ ( y ) = ∫ f ( x ) d x + c .  \int \frac{\mathrm{d} y}{\varphi(y)}=\int f(x) \mathrm{d} x+c \text {. } φ(y)dy=f(x)dx+c

这里我们把积分常数 c c c 明确写出来,而把 ∫ d y φ ( y ) , ∫ f ( x ) d x \int \frac{\mathrm{d} y}{\varphi(y)}, \int f(x) \mathrm{d} x φ(y)dy,f(x)dx 分别理解为 1 φ ( y ) , f ( x ) \frac{1}{\varphi(y)}, f(x) φ(y)1,f(x) 的原函数. 常数 c c c 的取值必须保证方程有意义。

例题:求解方程 d y   d x = − x y \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{x}{y}  dxdy=yx.

例题:求解方程 d y   d x = y ( − c + d x ) x ( a − b y ) , x ⩾ 0 , y ⩾ 0 \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y(-c+d x)}{x(a-b y)}, x \geqslant 0, y \geqslant 0  dxdy=x(aby)y(c+dx),x0,y0.

例题:求解方程 d y   d x = P ( x ) y \frac{\mathrm{d} y}{\mathrm{~d} x}=P(x) y  dxdy=P(x)y 的通解,其中 P ( x ) P(x) P(x) x x x 的连续函数.

2.1.2两种常见分离变量方程

齐次微分方程:形如
d y   d x = g ( y x ) \frac{\mathrm{d} y}{\mathrm{~d} x}=g\left(\frac{y}{x}\right)  dxdy=g(xy)

的方程,称为齐次微分方程,这里 g ( u ) g(u) g(u) u u u 的连续函数,可以采用换元 u = y x u=\frac{y}{x} u=xy 进而分离变量求解。

例题:求解方程 d y   d x = y x + tan ⁡ y x \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{x}+\tan \frac{y}{x}  dxdy=xy+tanxy.

例题:求解方程 x d y   d x + 2 x y = y ( x < 0 ) x \frac{\mathrm{d} y}{\mathrm{~d} x}+2 \sqrt{x y}=y \quad(x<0) x dxdy+2xy =y(x<0).

简单分式微分方程:形如
d y   d x = a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{a_1 x+b_1 y+c_1}{a_2 x+b_2 y+c_2}  dxdy=a2x+b2y+c2a1x+b1y+c1

的方程成为简单分式微分方程,也可经变量变换化为变量分离方程,这里 a 1 , a 2 , b 1 , b 2 a_1, a_2, b_1, b_2 a1,a2,b1,b2, c 1 , c 2 c_1, c_2 c1,c2 均为常数。

推广:上述解题的方法和步骤也适用于
① d y   d x = f ( a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 ) ② d y   d x = f ( a x + b y + c ) ③ y f ( x y ) d x + x g ( x y ) d y = 0 , ④ x 2 d y   d x = f ( x y ) , ⑤ d y   d x = x f ( y x 2 ) , ⑥ M ( x , y ) ( x   d x + y   d y ) + N ( x , y ) ( x   d y − y   d x ) = 0 \begin{align} &①\quad\frac{\mathrm{d} y}{\mathrm{~d} x}=f\left(\frac{a_1 x+b_1 y+c_1}{a_2 x+b_2 y+c_2}\right) \\ &②\quad\frac{\mathrm{d} y}{\mathrm{~d} x}=f(a x+b y+c) \\ &③\quad y f(x y) \mathrm{d} x+x g(x y) \mathrm{d} y=0, \\ &④\quad x^2 \frac{\mathrm{d} y}{\mathrm{~d} x}=f(x y), \\ &⑤\quad\frac{\mathrm{d} y}{\mathrm{~d} x}=x f\left(\frac{y}{x^2}\right),\\ & ⑥\quad M(x, y)(x \mathrm{~d} x+y \mathrm{~d} y)+N(x, y)(x \mathrm{~d} y-y \mathrm{~d} x)=0 \end{align}  dxdy=f(a2x+b2y+c2a1x+b1y+c1) dxdy=f(ax+by+c)yf(xy)dx+xg(xy)dy=0,x2 dxdy=f(xy), dxdy=xf(x2y),M(x,y)(x dx+y dy)+N(x,y)(x dyy dx)=0

(其中 M , N M, N M,N x , y x, y x,y 的齐次函数, 次数可以不相同) 等一些方程类

例题:求解方程
d y   d x = x − y + 1 x + y − 3 . \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x-y+1}{x+y-3} .  dxdy=x+y3xy+1.

2.2线性微分方程

2.2.1常数变易法

一阶线性微分方程:形如
d y   d x = P ( x ) y + Q ( x ) , \frac{\mathrm{d} y}{\mathrm{~d} x}=P(x) y+Q(x),  dxdy=P(x)y+Q(x),

其中 P ( x ) , Q ( x ) P(x), Q(x) P(x),Q(x) 在考虑的区间上是 x x x 的连续函数。

(1)若 Q ( x ) = 0 Q(x)=0 Q(x)=0 则方程变为
d y   d x = P ( x ) y , \frac{\mathrm{d} y}{\mathrm{~d} x}=P(x) y,  dxdy=P(x)y,
称为一阶齐次线性微分方程,已知通解 y = c e ∫ ( x ) d x y=c \mathrm{e}^{\int(x) \mathrm{d} x} y=ce(x)dx.

(2)若 Q ( x ) ≠ 0 Q(x) \neq 0 Q(x)=0 则方程称为一阶非齐次线性微分方程,我们分析(1)是方程特殊情形,很可能(2)的通解形如 y = c ( x ) e ∫ P ( x ) d x y=c(x) \mathrm{e}^{\int P(x) \mathrm{d} x} y=c(x)eP(x)dx.将该解带入方程可求得 c ( x ) c(x) c(x) 的解析式,说明我们的猜想正确,结果如下,这里 c ~ \tilde{c} c~ 是任意常数.
y = e ∫ P ( x ) d x ( ∫ Q ( x ) e − ∫ P ( x ) d x   d x + c ~ ) . y=\mathrm{e}^{\int P(x) \mathrm{d} x}\left(\int \boldsymbol{Q}(x) \mathrm{e}^{-\int P(x) d x} \mathrm{~d} x+\tilde{c}\right) . y=eP(x)dx(Q(x)eP(x)dx dx+c~).
这种方法称之为常数变易法

例题:求方程 ( x + 1 ) d y   d x − n y = e x ( x + 1 ) n + 1 (x+1) \frac{\mathrm{d} y}{\mathrm{~d} x}-n y=\mathrm{e}^x(x+1)^{n+1} (x+1) dxdyny=ex(x+1)n+1 的通解, n n n是常数。

例题:求方程 d y   d x = y 2 x − y 2 \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{2 x-y^2}  dxdy=2xy2y 的通解.

2.2.2伯努利方程

伯努利微分方程:形如
d y   d x = P ( x ) y + Q ( x ) y n \frac{\mathrm{d} y}{\mathrm{~d} x}=P(x) y+Q(x) y^n  dxdy=P(x)y+Q(x)yn

的方程是伯努利微分方程,这里 P ( x ) , Q ( x ) P(x), \boldsymbol{Q}(x) P(x),Q(x) x x x 的连续函数, n ≠ 0 , 1 n \neq 0,1 n=0,1 是常数,用 y − n y^{-n} yn 乘以上式两边, 得到
y − n d y   d x = y 1 − n P ( x ) + Q ( x ) , y^{-n} \frac{\mathrm{d} y}{\mathrm{~d} x}=y^{1-n} P(x)+Q(x), yn dxdy=y1nP(x)+Q(x),
引人变量变换
z = y 1 − n , z=y^{1-n}, z=y1n,

可以将方程转换为一阶线性微分方程。

例题:求方程 d y d x = 6 y x − x y 2 \frac{\mathrm{d} y}{\mathrm{d} x}=6 \frac{y}{x}-x y^2 dxdy=6xyxy2 的通解.

2.3恰当微分方程

2.3.1恰当微分方程概念

恰当微分方程:把一阶微分方程中的 x , y x, y x,y 平等看待,写成下面具有对称形式的方程
M ( x , y ) d x + N ( x , y ) d y = 0 , M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0, M(x,y)dx+N(x,y)dy=0,

这里假设 M ( x , y ) , N ( x , y ) M(x, y), N(x, y) M(x,y),N(x,y) 在某矩形域内是 x , y x, y x,y 的连续函数,且具有连续的一阶偏导数。如果此方程的左端恰好是某个二元函数 u ( x , y ) u(x, y) u(x,y) 的全微分, 即

M ( x , y ) d x + N ( x , y ) d y = d u ( x , y ) \begin{aligned} M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y & =\mathrm{d} u(x, y) \\ \end{aligned} M(x,y)dx+N(x,y)dy=du(x,y)

则称其为恰当微分方程。容易验证,通解就是
u ( x , y ) = c u(x, y)=c u(x,y)=c

这里 c c c 是任意常数。

例题:求 ( 3 x 2 + 6 x y 2 ) d x + ( 6 x 2 y + 4 y 3 ) d y = 0 \left(3 x^2+6 x y^2\right) \mathrm{d} x+\left(6 x^2 y+4 y^3\right) \mathrm{d} y=0 (3x2+6xy2)dx+(6x2y+4y3)dy=0 的通解.

例题:求解方程 ( cos ⁡ x + 1 y ) d x + ( 1 y − x y 2 ) d y = 0 \left(\cos x+\frac{1}{y}\right) \mathrm{d} x+\left(\frac{1}{y}-\frac{x}{y^2}\right) \mathrm{d} y=0 (cosx+y1)dx+(y1y2x)dy=0.

2.3.2积分因子法

恰当微分方程可以通过积分求出它的通解,因此能否将一个非恰当微分方程化为恰当微分方程就有很大的意义,这里我们引入积分因子的概念。

积分因子:如果存在连续可微的函数 μ = μ ( x , y ) ≠ 0 \mu=\mu(x, y) \neq 0 μ=μ(x,y)=0, 使得
μ ( x , y ) M ( x , y ) d x + μ ( x , y ) N ( x , y ) d y = 0 \mu(x, y) M(x, y) \mathrm{d} x+\mu(x, y) N(x, y) \mathrm{d} y=0 μ(x,y)M(x,y)dx+μ(x,y)N(x,y)dy=0

为一恰当微分方程, 即存在函数 v v v, 使
μ M   d x + μ N   d y ≡ d v , \mu M \mathrm{~d} x+\mu N \mathrm{~d} y \equiv \mathrm{d} v, μM dx+μN dydv,

则称 μ ( x , y ) \mu(x, y) μ(x,y) 为方程的积分因子,这时 v ( x , y ) = c v(x, y)=c v(x,y)=c 是方程通解, 因而也就是原方程的通解.

注1:同一个方程可以有不同的积分因子;

注2:$\mu $ 是积分因子的充要条件是:
∂ ( μ M ) ∂ y = ∂ ( μ N ) ∂ x \frac{\partial(\mu M)}{\partial y}=\frac{\partial(\mu N)}{\partial x} y(μM)=x(μN)
展开并整理可以得到:
N ∂ μ ∂ x − M ∂ μ ∂ y = ( ∂ M ∂ y − ∂ N ∂ x ) μ N \frac{\partial \mu}{\partial x}-M \frac{\partial \mu}{\partial y}=\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \mu NxμMyμ=(yMxN)μ
注3:积分因子是难找的,但是如果存在只与 x x x 有关的积分因子 μ = \mu= μ= μ ( x ) \mu(x) μ(x), 则 ∂ μ ∂ y = 0 \frac{\partial \mu}{\partial y}=0 yμ=0, 上式变成
N d μ d x = ( ∂ M ∂ y − ∂ N ∂ x ) μ , N \frac{\mathrm{d} \mu}{\mathrm{d} x}=\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \mu, Ndxdμ=(yMxN)μ,

整理得到
d μ μ = ∂ M ∂ y − ∂ N ∂ x N   d x . \frac{\mathrm{d} \mu}{\mu}=\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N} \mathrm{~d} x . μdμ=NyMxN dx.

由此可知, 方程有只与 x x x 有关的积分因子的充要条件是
∂ M ∂ y − ∂ N ∂ x N = ψ ( x ) , \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}=\psi(x), NyMxN=ψ(x),

这里 ψ ( x ) \psi(x) ψ(x) 仅为 x x x 的函数,从而可以求得一个只与 x x x 有关的积分因子
μ = e ∫ ψ ( x ) d x .  \mu=\mathrm{e}^{\int \psi(x) \mathrm{d} x} \text {. } μ=eψ(x)dx
同样,存在只与 y y y 有关的积分因子的充要条件是
∂ M ∂ y − ∂ N ∂ x − M = φ ( y ) , \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{-M}=\varphi(y), MyMxN=φ(y),

这里 φ ( y ) \varphi(y) φ(y) 仅为 y y y 的函数. 从而可以求得一个只与 y y y 有关的积分因子
μ = e ∫ φ ( y ) d y .  \mu=\mathrm{e}^{\int \varphi(y) \mathrm{d} y} \text {. } μ=eφ(y)dy

例题:利用积分因子法求解线性微分方程
d y   d x = P ( x ) y + Q ( x ) , \frac{\mathrm{d} y}{\mathrm{~d} x}=P(x) y+Q(x),  dxdy=P(x)y+Q(x),

例题:求解方程 d y   d x = − x y + 1 + ( x y ) 2 ( y > 0 ) \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{x}{y}+\sqrt{1+\left(\frac{x}{y}\right)^2} \quad(y>0)  dxdy=yx+1+(yx)2 (y>0).

例题:求解方程 y   d x + ( y − x ) d y = 0 y \mathrm{~d} x+(y-x) \mathrm{d} y=0 y dx+(yx)dy=0.

2.4隐式微分方程

一阶隐式微分方程的一般形式可表示为
F ( x , y , y ′ ) = 0 ,  F\left(x, y, y^{\prime}\right)=0 \text {, } F(x,y,y)=0

(1)如果能从此方程中解出导数 y ′ y^{\prime} y, 其表达式为 y ′ = f ( x , y ) y^{\prime}=f(x, y) y=f(x,y), 则可依已知的某一方法进行求解;

(2)但如果难以从方程中解出 y ′ y^{\prime} y,宜采用引进参数的办法使之变为导数已解出的方程类型。

主要讨论以下四个方程的解法
( 1 ) y = f ( x , y ′ ) ; ( 2 ) x = f ( y , y ′ ) ; ( 3 ) F ( x , y ′ ) = 0 ; ( 4 ) F ( y , y ′ ) = 0. (1) y=f\left(x, y^{\prime}\right);\\ (2) x=f\left(y, y^{\prime}\right);\\ (3) F\left(x, y^{\prime}\right)=0;\\ (4) F\left(y, y^{\prime}\right)=0.\\ (1)y=f(x,y);(2)x=f(y,y);(3)F(x,y)=0;(4)F(y,y)=0.

2.4.1可分离 y y y x x x 的方程

我们只讨论可分离 y y y 方程,对于形如下式的方程
y = f ( x , d y   d x ) y=f\left(x, \frac{\mathrm{d} y}{\mathrm{~d} x}\right) y=f(x, dxdy)

这里假设函数 f ( x , d y   d x ) f\left(x, \frac{\mathrm{d} y}{\mathrm{~d} x}\right) f(x, dxdy) 有连续的偏导数,引进参数 d y   d x = p \frac{\mathrm{d} y}{\mathrm{~d} x}=p  dxdy=p, 方程变为
y = f ( x , p ) y=f(x, p) y=f(x,p)

两边同时对 x x x 求导数, 并以 d y   d x = p \frac{\mathrm{d} y}{\mathrm{~d} x}=p  dxdy=p 代人, 得到一个关于 x , p x, p x,p 的一阶微分方程
p = ∂ f ∂ x + ∂ f ∂ p d p   d x . p=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial p} \frac{\mathrm{d} p}{\mathrm{~d} x} . p=xf+pf dxdp.
求出这个方程的通解再代入原方程即可。

例题:求方程 ( d y   d x ) 3 + 2 x d y   d x − y = 0 \left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^3+2 x \frac{\mathrm{d} y}{\mathrm{~d} x}-y=0 ( dxdy)3+2x dxdyy=0 的解.

例题:求方程 y = ( d y   d x ) 2 − x d y   d x + x 2 2 y=\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^2-x \frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{x^2}{2} y=( dxdy)2x dxdy+2x2 的解.

2.4.2难分离 y y y x x x 的方程

我们只讨论可形如
F ( x , y ′ ) = 0 F\left(x, y^{\prime}\right)=0 F(x,y)=0

的方程的解法.

p = y ′ = d y   d x p=y^{\prime}=\frac{\mathrm{d} y}{\mathrm{~d} x} p=y= dxdy. 从几何的观点看, F ( x , p ) = 0 F(x, p)=0 F(x,p)=0 代表 O x p O x p Oxp 平面上的一条曲线. 设把这曲线表为适当的参数形式
{ x = φ ( t ) , p = ψ ( t ) , \left\{\begin{array}{l} x=\varphi(t), \\ p=\psi(t), \end{array}\right. {x=φ(t),p=ψ(t),

这里 t t t 为参数,满足基本关系 d y = p   d x \mathrm{d} y=p \mathrm{~d} x dy=p dx. 代人原方程得
d y = ψ ( t ) φ ′ ( t ) d t , \mathrm{d} y=\psi(t) \varphi^{\prime}(t) \mathrm{d} t, dy=ψ(t)φ(t)dt,

两边积分, 得到
y = ∫ ψ ( t ) φ ′ ( t ) d t + c , y=\int \psi(t) \varphi^{\prime}(t) \mathrm{d} t+c, y=ψ(t)φ(t)dt+c,

于是得到方程的参数形式通解
{ x = φ ( t ) , y = ∫ ψ ( t ) φ ′ ( t ) d t + c , \left\{\begin{array}{l} x=\varphi(t), \\ y=\int \psi(t) \varphi^{\prime}(t) \mathrm{d} t+c, \end{array}\right. {x=φ(t),y=ψ(t)φ(t)dt+c,
其中 c c c 为任意常数.

例题:求解方程 x 3 + y ′ 3 − 3 x y ′ = 0 x^3+y^{\prime 3}-3 x y^{\prime}=0 x3+y′33xy=0 (这里 y ′ = d y   d x ) \left.y^{\prime}=\frac{\mathrm{d} y}{\mathrm{~d} x}\right) y= dxdy).

例题:求解方程 y 2 ( 1 − y ′ ) = ( 2 − y ′ ) 2 y^2\left(1-y^{\prime}\right)=\left(2-y^{\prime}\right)^2 y2(1y)=(2y)2.

于是得到方程的参数形式通解
{ x = φ ( t ) , y = ∫ ψ ( t ) φ ′ ( t ) d t + c , \left\{\begin{array}{l} x=\varphi(t), \\ y=\int \psi(t) \varphi^{\prime}(t) \mathrm{d} t+c, \end{array}\right. {x=φ(t),y=ψ(t)φ(t)dt+c,
其中 c c c 为任意常数.

例题:求解方程 x 3 + y ′ 3 − 3 x y ′ = 0 x^3+y^{\prime 3}-3 x y^{\prime}=0 x3+y′33xy=0 (这里 y ′ = d y   d x ) \left.y^{\prime}=\frac{\mathrm{d} y}{\mathrm{~d} x}\right) y= dxdy).

例题:求解方程 y 2 ( 1 − y ′ ) = ( 2 − y ′ ) 2 y^2\left(1-y^{\prime}\right)=\left(2-y^{\prime}\right)^2 y2(1y)=(2y)2.

补充说明:能有初等解法的微分方程是很有限的,例如形式上很简单的里卡蒂 (Riccati) 方程
d y   d x = P ( x ) y 2 + Q ( x ) y + R ( x ) \frac{\mathrm{d} y}{\mathrm{~d} x}=P(x) y^2+Q(x) y+R(x)  dxdy=P(x)y2+Q(x)y+R(x)

一般就没有初等解法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值