数理方程(导论)

导论

数学物理方程包括常微分方程(ODE )只出现对一个变量的求导,称为常微分方程,我们现在要学习的是偏微分方程(PDE)在方程里出现对多个变量求导,这样的方程称为偏微分方程,还有一种方程称为积分方程

我们研究的主要是二阶偏微分方程(PDE),二阶偏微分方程

1.椭圆形 \small \nabla^2\mu(x,y,z)=f,这个方程称为泊松方程,如果右边不等于0,称为泊松方程,如果等于0,称为拉普拉斯方程,拉普拉斯方程是泊松方程的特例

Laplace operator——拉普拉斯算符,有一个著名的变换称为拉普拉斯变换,进行某种数学运算的工具,我们叫做算子,也可称之为算符,\small \nabla称为梯度算符,这个倒三角是一个矢量性的算符\small \nabla=(\frac{\partial }{\partial x},\frac{\partial }{\partial y},\frac{\partial }{\partial z}),对一个函数进行某种梯度运算,也就是最大的方向导数  梯度的方向是增加最快的方向,\small \Delta_3 =\nabla \cdot \nabla=\nabla^2=\frac{\partial^2 }{\partial x^2}+\frac{\partial^2 }{\partial y^2}+\frac{\partial^2 }{\partial z^2}称为拉普拉斯算符,是一个标量算符,如果是\small \nabla_2是二维拉普拉斯算符,同理可推得,甚至我们还有一个四维的拉普拉斯算符,就是达朗贝尔算符

2.抛物型  用来描述扩散 不随时间而变称为稳定,\small \mu_t-D\nabla^2\mu=f,\mu_t=\frac{\partial \mu}{\partial t},特征线是抛物线,典型的用来描述扩散,物质的扩散

3.双曲型 \small \mu_{tt}-a^2\nabla^2\mu=f,a的平方表示波的传播速度是a,如果a是声速,表示机械波,如果是光速,代表的是光波,机械波的速度\small a=\sqrt{\frac{N}{\rho}},\small =\frac{1}{\sqrt{\varepsilon \mu}}=\frac{1}{\sqrt{\varepsilon_{r}\mu_{r}\varepsilon_{0}\mu_{0}}}=\frac{c_0}{n},c0是光速,n是折射率\small n=\sqrt{\varepsilon_r \mu_r}


解的要求

所谓解的适定性,包括解的存在性稳定性问题,还有这个唯一性问题

经过时间的演变,这个解是否会发生偏差?初始条件发生变化,带来结果的变化非常之大

偏微分方程只是告诉我们随时间,空间变化的规律(相互之间的数学联系),但是还需要告诉我初始时刻是什么样的,空间的边界上这个场是怎么分布的,既有初始条件(\small \mu|_{t=0}=\phi(\vec r),)


解决方法

我们有几种解决的方法:(1)行波法 (2)分离变量法 (3)积分变换 (4) 格林函数法 (5)变分法 (6)数值方法

我们主要学习前面四种,其中分离变量法最重要

泊松方程 (poisson Eq.) \small \nabla^2\mu=f(\vec r),\vec r=(x,y,z)

我们以静电场为例,高斯定理,静电场满足\small \Delta \cdot \vec D=\rho_{f},\small \vec D=\varepsilon \vec E,D和E的关系,称为电磁性质,\small \vec E=-\nabla \mu电场强度的方向是降落最快的方向

把E带到上面这个式子,\small \vec D=\varepsilon \vec E=\varepsilon \nabla \mu,再代入高斯定理,可得\small -\nabla \cdot (\varepsilon \nabla \mu)=\rho_f我们就可以得到

\small \nabla^2\mu=-\frac{\rho_f}{\varepsilon},所以满足泊松方程,没有净电荷的地方满足拉普拉斯方程


双曲型波动方程

关于波动方程是怎么来的? 双曲型波动方程,我们以机械波为例,离不开煤制,不能脱离煤制存在,依靠分子力,分子的弹性振动来传播

我们以杨氏弹性模量\small F=-(Y\frac{S}{L})\Delta l=-k\Delta L,k=Y\frac{S}{L}

\small sdx是体积元,\small \rho dv=\rho sdx=dm,质量元,\small \mu(x,t)x是这个质点的平衡位置,那么在x这个地方,质点发生绝对位移,发生了偏移平衡位置的绝对位移\small \mu,我们来定义应变\small \Delta l= \Delta u

那就是说\small \frac{\Delta u}{\Delta x}=\frac{\Delta l}{L},\small \frac{\partial \mu }{\partial x}相当于应变\small F=-YS\frac{\partial u}{\partial x},我们就可以推导波动方程,这个长度为x的质量元,外部可能还会受到一个强迫的振动源,\small dm的受力方程+牛顿第二定律

\small Y\frac{\partial^2 \mu}{\partial x^2}+f=\rho \frac{\partial^2 \mu}{\partial t^2}

我们可以得到\small \frac{\partial^2 }{\partial x^2}-(\frac{Y}{\rho})\frac{\partial^2 \mu}{\partial x^2}=\frac{f}{\rho}=F(x,t),单位体积被消除掉了就是单位质量收到的外力

\small \frac{Y}{\rho}=a^2,也就是说机械波的波速\small a=\sqrt{\frac{Y}{\rho}},对应于\small \mu_{tt}-a^2 \mu_{xx}=F(x,t),是强迫力之下的波动方程

波速由媒质的弹性和惯性影响,一般波源决定频率

如何推导扩散方程 

\small \mu_t-D\nabla^2 \mu=f,参考数学物理方法,根据傅里叶的热传导定律,这个定律告诉我们热能的传递速度与横截面积成正比,与扩散系数成正比,与温度的梯度成正比\small \frac{\partial o}{\partial x}=-DS \Delta T


  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凉月松心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值