粤港澳大湾区7大机场新闻数据的评分系统

粤港澳大湾区7大机场新闻数据的评分系统

# 一、获取网页源代码

# 1.引入所需库

import requests

import re

import time

import csv

# 2.请求头
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36'}

# 3.需要挖取新闻数据的机场
companys = ['广州白云机场', '深圳宝安机场', '惠州平潭机场', '佛山沙堤机场', '珠海金湾机场', '香港国际机场', '澳门国际机场']

# 4.建立挖取某机场新闻的函数,获得该网页的源代码
def baidu(i,company):
    num = (i-1)*10
    url = 'https://www.baidu.com/s?tn=news&rtt=4&bsst=1&cl=2&wd=' + company + '&medium=0&x_bfe_rqs=03E80&tngroupname=organic_news&newVideo=12&rsv_dl=news_b_pn&pn=' + str(num)
    res = requests.get(url, headers=headers).text

# 二、提取信息并清洗数据

# 1.提取源代码中所需的网址、标题、新闻来源和发布日期的正则表达式
    p_href = '<h3 class="news-title_1YtI1"><a href="(.*?)"'
    href = re.findall(p_href, res, re.S)
    p_title = '<h3 class="news-title_1YtI1"><.*?>(.*?)<!--/s-text--></a></h3>'
    title = re.findall(p_title, res, re.S)
    p_date = '<span class="c-color-gray2 c-font-normal">(.*?)</span>'
    date = re.findall(p_date, res, re.S)
    p_source = '<span class="c-color-gray c-font-normal c-gap-right">(.*?)</span>'
    source = re.findall(p_source, res, re.S)

# 2.清洗标题及发布日期中的干扰信息
    for i in range(len(href)):
        title[i] = title[i].strip()
        title[i] = re.sub('<.*?>', '', title[i])
        date[i] = date[i].split(' ')[0]
        date[i] = re.sub('年', '-', date[i])
        date[i] = re.sub('月', '-', date[i])
        date[i] = re.sub('日', '', date[i])
        if ('小时' in date[i]) or ('分钟' in date[i]):
            date[i] = time.strftime("%Y-%m-%d")
        else:
            date[i] = date[i]

# 三、对新闻标题和新闻正文进行评分

    score = []
    keywords1 = ['正常', '涨停', '增加', '超过', '增大', '通过', '恢复', '涨幅', '优质', '首个', '迈入']
    keywords2 = ['违约', '诉讼', '下降', '阻碍', '空难', '噪音', '扰民', '黑幕']
    for i in range(len(title)):
        num = 0

        # 1.获取新闻正文
        try:
            article = requests.get(href[i], headers=headers, timeout=10).text
        except:
            article = '新闻爬取失败'

        # 2.解决新闻正文中可能出现的乱码问题
        try:
            article = article.encode('ISO-8859-1').decode('utf-8')  # 解码为UTF-8
        except:
            try:
                article = article.encode('ISO-8859-1').decode('gbk')  # 解码为GBK
            except:
                article = article  # 保持本身的编码

        # 3.筛选新闻正文中真正的正文内容,忽略旁边的滚动新闻的内容
        p_article = '<p>(.*?)</p>'
        article_main = re.findall(p_article, article)  # 获取<p>标签里的正文信息,结果是一个列表
        article = ''.join(article_main)  # 将列表转换成为字符串
        for k in keywords1:
            if (k in article) or (k in title[i]):
                num += 5
        score.append(num)
        
        for L in keywords2:
            if (L in article) or (L in title[i]):
                num -= 5
        score.append(num)

# 四、将数据存入csv

# 1. 创建文件对象
    f = open('Airport news data.csv','a',encoding='utf-8')

# 2. 基于文件对象构建 csv写入对象
    csv_writer = csv.writer(f)

# 3. 构建列表头
    csv_writer.writerow(["机场","标题","网址","来源","日期","对新闻标题和内容评分"])
    for i in range(len(title)):
            csv_writer.writerow([company, title[i], href[i], source[i], date[i], score[i]])
    print("yes")

# 4. 关闭文件
    f.close()

#5.获取文章内容
#    l=open('test.csv','a',encoding='utf-8')
#    csv_writer=csv.writer(l)
#    csv_writer.writerow([article])
#    print("ok!")

# 五、批量爬取7个机场每个机场5页共35页百度网的数据并存入csv

for company in companys:
   for i in range(5):
       baidu(i, company)
       print(company + '第' + str(i+1) + "页爬取成功")

最终结果

 

附上所有代码

# ===============================
# 粤港澳大湾区7个机场新闻数据的评分系统
# ===============================
# 一、获取网页源代码
# 1.引入所需库
import requests
import re
import time
import csv

# 2.请求头
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36'}

# 3.需要挖取新闻数据的机场
companys = ['广州白云机场', '深圳宝安机场', '惠州平潭机场', '佛山沙堤机场', '珠海金湾机场', '香港国际机场', '澳门国际机场']

# 4.建立挖取某机场新闻的函数,获得该网页的源代码
def baidu(i,company):
    num = (i-1)*10
    url = 'https://www.baidu.com/s?tn=news&rtt=4&bsst=1&cl=2&wd=' + company + '&medium=0&x_bfe_rqs=03E80&tngroupname=organic_news&newVideo=12&rsv_dl=news_b_pn&pn=' + str(num)
    res = requests.get(url, headers=headers).text

# 二、提取信息并清洗数据
# 1.提取源代码中所需的网址、标题、新闻来源和发布日期的正则表达式
    p_href = '<h3 class="news-title_1YtI1"><a href="(.*?)"'
    href = re.findall(p_href, res, re.S)
    p_title = '<h3 class="news-title_1YtI1"><.*?>(.*?)<!--/s-text--></a></h3>'
    title = re.findall(p_title, res, re.S)
    p_date = '<span class="c-color-gray2 c-font-normal">(.*?)</span>'
    date = re.findall(p_date, res, re.S)
    p_source = '<span class="c-color-gray c-font-normal c-gap-right">(.*?)</span>'
    source = re.findall(p_source, res, re.S)

# 2.清洗标题及发布日期中的干扰信息
    for i in range(len(href)):
        title[i] = title[i].strip()
        title[i] = re.sub('<.*?>', '', title[i])
        date[i] = date[i].split(' ')[0]
        date[i] = re.sub('年', '-', date[i])
        date[i] = re.sub('月', '-', date[i])
        date[i] = re.sub('日', '', date[i])
        if ('小时' in date[i]) or ('分钟' in date[i]):
            date[i] = time.strftime("%Y-%m-%d")
        else:
            date[i] = date[i]


# 三、对新闻标题和新闻正文进行评分
    score = []
    keywords1 = ['正常', '涨停', '增加', '超过', '增大', '通过', '恢复', '涨幅', '优质', '首个', '迈入']
    keywords2 = ['违约', '诉讼', '下降', '阻碍', '空难', '噪音', '扰民', '黑幕']
    for i in range(len(title)):
        num = 0

        # 1.获取新闻正文
        try:
            article = requests.get(href[i], headers=headers, timeout=10).text
        except:
            article = '新闻爬取失败'

        # 2.解决新闻正文中可能出现的乱码问题
        try:
            article = article.encode('ISO-8859-1').decode('utf-8')  # 解码为UTF-8
        except:
            try:
                article = article.encode('ISO-8859-1').decode('gbk')  # 解码为GBK
            except:
                article = article  # 保持本身的编码

        # 3.筛选新闻正文中真正的正文内容,忽略旁边的滚动新闻的内容
        p_article = '<p>(.*?)</p>'
        article_main = re.findall(p_article, article)  # 获取<p>标签里的正文信息,结果是一个列表
        article = ''.join(article_main)  # 将列表转换成为字符串
        for k in keywords1:
            if (k in article) or (k in title[i]):
                num += 5
        score.append(num)
        
        for L in keywords2:
            if (L in article) or (L in title[i]):
                num -= 5
        score.append(num)
        
# 四、将数据存入csv
# 1. 创建文件对象
    f = open('Airport news data.csv','a',encoding='utf-8')

# 2. 基于文件对象构建 csv写入对象
    csv_writer = csv.writer(f)

# 3. 构建列表头
    csv_writer.writerow(["机场","标题","网址","来源","日期","对新闻标题和内容评分"])
    for i in range(len(title)):
            csv_writer.writerow([company, title[i], href[i], source[i], date[i], score[i]])
    print("yes")
# 4. 关闭文件
    f.close()

#5.获取文章内容
#    l=open('test.csv','a',encoding='utf-8')
#    csv_writer=csv.writer(l)
#    csv_writer.writerow([article])
#    print("ok!")


# 五、批量爬取7个机场每个机场5页共35页百度网的数据并存入csv
for company in companys:
   for i in range(5):
       baidu(i, company)
       print(company + '第' + str(i+1) + "页爬取成功")

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ML_GearYe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值