一、腾讯云智·商业产品offer✍️
业务一面
一面是自己的导师直接面试,整体难度不大,更多是考验综合素质,但是大部分的问题都围绕着商业化角度而展开
一面面试官告诉我此岗位实际的工作与商业化产品毫无差异,所以考察重点为商业化思维。
-
自我介绍
-
实习项目介绍(商业模式、产品规划、营销方式)
-
在讲实习项目的同时,也讲到了对AI的看法,引导面试官按照我的节奏提问
-
对AI的理解,如何看待现在的AI产品
-
主要谈论了现在AI确实实实在在存在泡沫,我谈论的核心观点为:开源模型能力接近闭源模型能力、大模型转为专有小模型、更注重应用场景的细化和区分,在具体领域上进行核心的赋能,而非大谈模型能力。
-
你怎么看代混元大模型
-
说了现在AI四小龙的模型能力和具体领域的能力,表达在这几家中最看好minimax(尤其是星野这个产品),进而引申出模型能力不是现在AI领域第一战场,模型如何应用才是,进一步说了混元大模型有最顶级的团队和最顶级的资源,只是缺一个相关的发力点。
-
你认为接下来AI发展的趋势是朝什么发展
-
引用王小川的话,AI医疗是AI领域的顶上明珠,谈了下AI医疗接下来的核心场景将会集中在院外这个场景而非院内。
业务二面
1.自我介绍
2.工作内容介绍
3.换实习的原因
4.想要找一个什么样的职位吗?描述一下
5.XX实习项目介绍
6.个人经历项目介绍
7.产品运营和产品策划的区别
-
核心观点:运营对外负责,产品对内负责
-
产品运营的时候工作内容集中在内外部调研,提出产品的优化需求
-
产品经理则需要跟进需求,思考需求真伪,以及判断业务本质需求并把需求变成可落地的方案
-
产品经理对资源负责,掌控好产品的边界,保证资源可以最大化的利用
-
产品运营对数据负责,根据已有的数据,确定产品的方案,并根据产品方案的数据反馈给产品经理,推动产品的优化升级。
8.XX的实习项目介绍(怎么充当其中的连接者)
9.XX的实习项目介绍(2bor2c 两者看法 )
业务三面
1.自我介绍
2.家乡地点、家庭情况、恋爱情况
3.有没有考研计划
4.未来求职职业规划
5.部门介绍
6.实习项目介绍(竞品分析方式方法、竞品介绍)
7.产品其实更多会面向 c 端的用户?用户的这些群体里面最核心的诉求是什么?
8.项目阶段
9.那从个人的视角来看,产品在做商业化体系建设,自己的思路和想法。
10.如果要是2b,这个项目该怎么展开
AI2b无非就两种模式一方面就是做这种合作,另一方面你就是做这种技术上的一个能力输出。针对两种方式,各自提出了解决方案。
11.最近有关注哪些AI产品
谈及了genspark(非常推荐这个产品)
- AI未来发展趋势是什么
观点同一面的时候一样,附上我的部分观点答案
MiniMax 就是一个非常值得学习的对象,那目前来说它在这块领域抓的已经非常死了,他们也在开拓自己新的产品啊。
我觉得可能接下来我们再往他这个渠道赛道去走已经是不太现实了,但我们接下来可以在其他方义上进行赋能吗?
你可能效率工具是个大家也比第二卷的一个类别,但现在目前来说没有一家做得非常这种独头独大,就不像 GPT 这种产品做对话类生成,对话的文字生成的做到多大,大家都是各自各有千秋,所以还能杀出来一层赛道,那接下来在这种二级赛道下面还有三级赛道,也就是所谓的这个特别垂类的行业了。
由于文章篇幅有限,不能将全部的面试题+答案解析展示出来,有需要完整面试题资料的朋友,可以扫描下方二维码免费领取哦!!! 👇👇👇👇

面试题展示
1、请解释一下BERT模型的原理和应用场景。
答案:BERT(Bidirectional Encoder Representations from Transformers)是一种预训练的语言模型,通过双向Transformer编码器来学习文本的表示。它在自然语言处理任务中取得了很好的效果,如文本分类、命名实体识别等。
2、什么是序列到序列模型(Seq2Seq),并举例说明其在自然语言处理中的应用。
答案:Seq2Seq模型是一种将一个序列映射到另一个序列的模型,常用于机器翻译、对话生成等任务。例如,将英文句子翻译成法文句子。
3、请解释一下Transformer模型的原理和优势。
答案:Transformer是一种基于自注意力机制的模型,用于处理序列数据。它的优势在于能够并行计算,减少了训练时间,并且在很多自然语言处理任务中表现出色。
4、什么是注意力机制(Attention Mechanism),并举例说明其在深度学习中的应用。
答案:注意力机制是一种机制,用于给予模型对不同部分输入的不同权重。在深度学习中,注意力机制常用于提升模型在处理长序列数据时的性能,如机器翻译、文本摘要等任务。
5、请解释一下卷积神经网络(CNN)在计算机视觉中的应用,并说明其优势。
答案:CNN是一种专门用于处理图像数据的神经网络结构,通过卷积层和池化层提取图像特征。它在计算机视觉任务中广泛应用,如图像分类、目标检测等,并且具有参数共享和平移不变性等优势。
6、请解释一下生成对抗网络(GAN)的原理和应用。
答案:GAN是一种由生成器和判别器组成的对抗性网络结构,用于生成逼真的数据样本。它在图像生成、图像修复等任务中取得了很好的效果。
7、请解释一下强化学习(Reinforcement Learning)的原理和应用。
答案:强化学习是一种通过与环境交互学习最优策略的机器学习方法。它在游戏领域、机器人控制等领域有广泛的应用。
8、请解释一下自监督学习(Self-Supervised Learning)的原理和优势。
答案:自监督学习是一种无需人工标注标签的学习方法,通过模型自动生成标签进行训练。它在数据标注困难的情况下有很大的优势。
9、解释一下迁移学习(Transfer Learning)的原理和应用。
答案:迁移学习是一种将在一个任务上学到的知识迁移到另一个任务上的学习方法。它在数据稀缺或新任务数据量较小时有很好的效果。
10、请解释一下模型蒸馏(Model Distillation)的原理和应用。
答案:模型蒸馏是一种通过训练一个小模型来近似一个大模型的方法。它可以减少模型的计算和存储开销,并在移动端部署时有很大的优势。
11、请解释一下LSTM(Long Short-Term Memory)模型的原理和应用场景。
答案:LSTM是一种特殊的循环神经网络结构,用于处理序列数据。它通过门控单元来学习长期依赖关系,常用于语言建模、时间序列预测等任务。
12、请解释一下BERT模型的原理和应用场景。
答案:BERT(Bidirectional Encoder Representations from Transformers)是一种预训练的语言模型,通过双向Transformer编码器来学习文本的表示。它在自然语言处理任务中取得了很好的效果,如文本分类、命名实体识别等。
13、什么是注意力机制(Attention Mechanism),并举例说明其在深度学习中的应用。
答案:注意力机制是一种机制,用于给予模型对不同部分输入的不同权重。在深度学习中,注意力机制常用于提升模型在处理长序列数据时的性能,如机器翻译、文本摘要等任务。
14、请解释一下生成对抗网络(GAN)的原理和应用。
答案:GAN是一种由生成器和判别器组成的对抗性网络结构,用于生成逼真的数据样本。它在图像生成、图像修复等任务中取得了很好的效果。
15、请解释一下卷积神经网络(CNN)在计算机视觉中的应用,并说明其优势。
答案:CNN是一种专门用于处理图像数据的神经网络结构,通过卷积层和池化层提取图像特征。它在计算机视觉任务中广泛应用,如图像分类、目标检测等,并且具有参数共享和平移不变性等优势。
16、请解释一下强化学习(Reinforcement Learning)的原理和应用。
答案:强化学习是一种通过与环境交互学习最优策略的机器学习方法。它在游戏领域、机器人控制等领域有广泛的应用。
17、请解释一下自监督学习(Self-Supervised Learning)的原理和优势。
答案:自监督学习是一种无需人工标注标签的学习方法,通过模型自动生成标签进行训练。它在数据标注困难的情况下有很大的优势。
18、请解释一下迁移学习(Transfer Learning)的原理和应用。
答案:迁移学习是一种将在一个任务上学到的知识迁移到另一个任务上的学习方法。它在数据稀缺或新任务数据量较小时有很好的效果。
19、请解释一下模型蒸馏(Model Distillation)的原理和应用。
答案:模型蒸馏是一种通过训练一个小模型来近似一个大模型的方法。它可以减少模型的计算和存储开销,并在移动端部署时有很大的优势。
20、请解释一下BERT中的Masked Language Model(MLM)任务及其作用。
答案:MLM是BERT预训练任务之一,通过在输入文本中随机mask掉一部分词汇,让模型预测这些被mask掉的词汇。
由于文章篇幅有限,不能将全部的面试题+答案解析展示出来,有需要完整面试题资料的朋友,可以扫描下方二维码免费领取哦!!! 👇👇👇👇
